DOI QR코드

DOI QR Code

조속기의 동적 평형위치 해석

Analysis of Dynamic Equilibrium Configuration of Speed Governor

  • 강주석 (한국교통대학교 철도차량시스템공학과)
  • Kang, Juseok (Dept. of Railway Vehicle System Eng., Korea National University of Transportation)
  • 투고 : 2013.09.23
  • 심사 : 2013.10.10
  • 발행 : 2013.10.31

초록

본 연구에서는 구속조건을 가진 기계계의 동적 평형위치를 다물체 동역학 해석방법을 이용하여 계산하였다. 다물체계에서 얻어지는 시간 구속조건을 가진 구속조건식과 동역학식으로부터 독립좌표계로 이루어진 동적평형식을 유도하였다. 동적 평형식은 구속조건식과 함께 비선형 대수방정식의 형태로서 Newton-Raphson 방법을 이용하여 수치해를 구하였다. 제안된 동적 평형 계산 방법을 조속기에 적용하여 동적 평형위치를 구하였다. 해석결과는 상용 프로그램의 동역학해석을 통한 평형위치의 결과와 비교하여 타당성을 검증하였다. 조속기의 회전 각속도에 대한 평형위치를 계산하고 설계 파라미터에 대한 평형위치의 영향을 분석하였다.

This paper proposes a method to obtain the dynamic equilibrium configuration of a constrained mechanical system by using multibody dynamic analysis. Dynamic equilibrium equations with independent coordinates are derived from the time-dependent constraint equations and dynamic equations of a multibody system. The Newton-Raphson method is used to find numerical solutions for nonlinear algebraic equations that are composed of the dynamic equilibrium and constraint equations. The proposed method is applied to obtain the dynamic equilibrium configuration of a speed governor, and the results are verified on the basis of the results from conventional dynamic analysis. Furthermore, vertical displacements at equilibrium configuration, which varied with the rotational velocity of the speed governor, are calculated, and design parameter analysis of the equilibrium configuration is presented.

키워드

참고문헌

  1. J. L. Gaikwad, B. Dasgupta, U. Joshi, "Static equilibrium analysis of compliant mechanical systems using relative coordinates and loop closure equations", Mechanism and Machine Theory, Vol. 39, pp. 501-517, 2004. DOI: http://dx.doi.org/10.1016/j.mechmachtheory.2003.11.004
  2. B. S Kim, S. M Eom, H. H. Yoo, "Design variable tolerance effects on the natural frequency variance of constrained multi-body systems in dynamic equilibrium", Journal of Sound and Vibration, Vol. 320, pp. 545-558, 2009. DOI: http://dx.doi.org/10.1016/j.jsv.2008.08.015
  3. H. S. Byun, "Analysis of Dynamics Characteristics of an Underwater Platform System", Journal of the Korea Academia-Industrial cooperation Society, Vol. 13, No. 8 pp. 3345-3351, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.8.3345
  4. J. S. Kang, "A three dimensional wheelset dynamic analysis considering wheel-rail two point contact", Journal ot the Korean Society for Railway, Vol.15, No. 1, pp.1-8, 2012. DOI: http://dx.doi.org/10.7782/JKSR.2012.15.1.001
  5. K. H. Fasol, "A short history of hydropower control", IEEE Control Syst. Mag. Vol. 22, pp. 68-76, 2002. DOI: http://dx.doi.org/10.1109/MCS.2002.1021646
  6. C.D. Rakopoulos, E.G. Giakoumis, "A computer program for simulating the steady-state and transient behaviour of direct-acting engine governors", Advances in Engineering Software, Vol. 30, pp. 281-289, 1999. DOI: http://dx.doi.org/10.1016/S0965-9978(98)00078-7
  7. J, Sotomayora, L. F. Mellob, D. C. Braga, "Stability and Hopf bifurcation in an hexagonal governor system", Nonlinear Analysis: Real World Applications, Vol. 9, pp. 889-898, 2008. DOI: http://dx.doi.org/10.1016/j.nonrwa.2007.01.007
  8. M. Denny "Watt steam governor stability" European Journal of Physics, Vol. 23, pp. 339-351, 2002 DOI: http://dx.doi.org/10.1088/0143-0807/23/3/313
  9. P.E. Nikravesh, Computer-aided analysis of mechanical systems, Prentice-hall, 1988.
  10. Using Matlab Ver.6, The Mathworks Inc., Natick, MA, USA, 2004.