DOI QR코드

DOI QR Code

Simultaneous Determination of Fructose, Glucose, and Sucrose in Honey and Commercial Drinks by GC and GC/MS

GC 및 GC/MS를 이용한 벌꿀 및 시판 음료 중의 Fructose, Glucose 및 Sucrose의 동시분석

  • Yun, Jeong-Sik (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Jeon, Hyun-Suk (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, In-Suk (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Lee, Hee-Jin (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Lee, Hye-Jeong (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Hyun, Jae-Yeoul (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, Jong-Bae (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan)
  • 윤정식 (대구광역시 보건환경연구원 식품분석과) ;
  • 전현숙 (대구광역시 보건환경연구원 식품분석과) ;
  • 김인숙 (대구광역시 보건환경연구원 식품분석과) ;
  • 이희진 (대구광역시 보건환경연구원 식품분석과) ;
  • 이혜정 (대구광역시 보건환경연구원 식품분석과) ;
  • 현재열 (대구광역시 보건환경연구원 식품분석과) ;
  • 김종배 (대구광역시 보건환경연구원 식품분석과)
  • Received : 2013.03.19
  • Accepted : 2013.06.24
  • Published : 2013.10.31

Abstract

This study was performed to establish method of simultaneous determination of fructose, glucose, and sucrose in honey and commercial vitamin drinks by GC and GC/MS. Optimum chromatographic separation of trimethylsilyl-oxime (TMSO) derivatives by GC was achieved on a DB-5 column. Calibration curves for fructose, glucose and sucrose TMSO derivatives by GC were linear in the range of 50-5000 ${\mu}g/mL$, and their $r^2$ values were 0.9999, The limit of detection and limit of quantification of fructose, glucose, and sucrose were 0.68, 0.47, and 0.53 ${\mu}g/mL$, respectively, and 2.27, 1.58, and 1.77 ${\mu}g/mL$, respectively. Average recoveries of fructose, glucose, and sucrose were 100.5, 101.0, and 99.7%, respectively. When the method was applied to 12 honey samples, the average concentrations of fructose, glucose and sucrose were $42.58{\pm}1.97%$, $27.74{\pm}1.16%$, and $0.79{\pm}0.52%$, respectively. The F/G ratio was $1.53{\pm}0.07$. For fructose and glucose contents, results from the GC analysis were similar to those from the HPLC analysis, but the sucrose content was different for each analysis method. We suggest that the GC method is more suitable than other official analytical methods for simultaneous determination of fructose, glucose, and sucrose in honey.

본 연구는 GC 및 GC/MS에 의한 벌꿀과 시판음료 중에 함유되어 있는 fructose, glucose, sucrose의 TMS 및 TMSO 유도체화를 통한 동시분석방법을 확립하고자 하였다. 3종 당류를 분석하기 위한 동시분석방법으로 당류의 TMSO 유도체화가 TMS 유도체화 방법보다 정성 및 정량성이 우수한 것으로 나타났으며, TMSO화된 당류의 GC 최적분석조건으로 초기 oven온도 $175^{\circ}C$에서 5분간 머무르게 하다가 $10^{\circ}C/min$$280^{\circ}C$까지 승온시키는 조건으로 3종의 당류를 19분 이내에 분석할 수 있었다. GC 분석에서 fructose와 glucose 그리고 sucrose의 직선성은 50-5000 ${\mu}g/mL$ 농도 범위 내에서 $r^2$값이 모두 0.9999 이상이었으며, 회수율은 각각 100.5, 101.0, 99.7%이였으며, 검출한계와 정량한계는 0.68, 0.47, 0.53 ${\mu}g/mL$와 2.27, 1.58, 1.77 ${\mu}g/mL$이었다. 일내 정확도와 정밀성은 fructose, glucose, sucrose에서 각각 99.0-100.0%와 0.47-1.06%, 일간 정확도와 정밀성은 100.1-101.2%와 1.09-1.79%로 나타났다. 위와 같은 우수한 분석 값은 GC/MS에 의한 분석에서도 유사하게 나타났다. 확립된 GC 분석방법으로 아카시아 벌꿀 시료 12종의 당 함량을 조사한 결과, 아카시아 벌꿀의 fructose와 glucose 평균함량은 각각 $42.58{\pm}1.97%$, $27.74{\pm}1.16%$이었으며, F/G ratio는 $1.53{\pm}0.07$로 HPLC로 분석한 값과 거의 동일하였다. 그러나 sucrose 함량은 GC분석에서는 평균함량이 $0.79{\pm}0.52%$였으나, HPLC $NH_2$ column을 사용 시 $2.24{\pm}4.62%$를 나타내었고, carbohydrate column으로 분석했을 때는 분리도의 저하로 몇 개의 시료에서는 정확한 함량분석에 어려움이 있었다. 따라서 본 연구에서 실시한 GC, GC/MS에 의한 fructose, glucose, sucrose의 TMSO 유도체 동시분석방법은 감도, 분리도, 회수율, 직선성, 정밀성, 정확도면에서 우수한 정량분석방법이라고 판단된다.

Keywords

References

  1. Kim DH. Food Chemistry. Tamgudang Press, Seoul, Korea. p. 319 (2010)
  2. KFDA. Food Code. Korean Food & Drug Administration, Cheongwon, Korea. p. 5-29-7 (2012)
  3. Codex Alimentary Committee. Codex standard for honey, CODEX STAN 12. Rome, Italy p. 1-8 (2001)
  4. Rodriguez GO, Ferrer BS, Ferrer A, Rodriguez B. Characterization of honey produced in Venezuela. Food Chem. 84: 499-502 (2004) https://doi.org/10.1016/S0308-8146(02)00517-4
  5. Chakir A, Romane A, Marcazzan GL. Physicochemical properties of some honeys produced from different plants in Morocco, Arabian J. Chem. http://dx.doi.org/10.1016/j.arabjc.2011.10.013 (2011)
  6. Ouchemoukh S, Schweitzer P, Bey MB, Djoudad-Kadji H, Louaileche H. HPLC sugar profiles of Algerian honeys. Food Chem. 121: 561-568 (2010) https://doi.org/10.1016/j.foodchem.2009.12.047
  7. Mamzanares AB, Garcia ZH, Galdon BR, Rodriguez ER, Romero CD. Differentiation of blossom and honeydew honeys using mutivariate analysis on the physicochemical parameters and sugar composition. Food Chem. 126: 664-672 (2011) https://doi.org/10.1016/j.foodchem.2010.11.003
  8. Mendes E, Proenca EB, Ferreira IMPLVO, Ferreira MA. Quality evaluation of portuguese honey. Carbohyd. Polym. 37: 219-223 (1998) https://doi.org/10.1016/S0144-8617(98)00063-0
  9. Kamal MA, Klein P. Determination of sugars in honey by liquid chromatography. Saudi J. Biologi. Sci. 18: 17-21 (2011) https://doi.org/10.1016/j.sjbs.2010.09.003
  10. Ruiz-Matute AI, Sanz ML, Martinez-Castro I. Use of gas chromatography- mass spectrometry for identification of new disaccharide in honey. J. Chromatogr. A 1157: 480-483 (2007) https://doi.org/10.1016/j.chroma.2007.05.056
  11. Sanz ML, Sanz J, Martinez-Castro I. Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disacharides and trisaccharides in honey. J. Chromatogr. A 1059: 143-148 (2004) https://doi.org/10.1016/j.chroma.2004.09.095
  12. de la Fuente E, Ruiz-Matute AI, Valencia-Barrera RM, Sanz J, Martinez-Castro I. Carbohydrate composition of Spanish unifloral honeys. Food Chem. 129: 1483-1489 (2011) https://doi.org/10.1016/j.foodchem.2011.05.121
  13. Ruiz-Matute AI, Brokl M, Soria AC, Sanz ML, Martinez-Castro I. Gas chromatographic-mass spectrometric characterisation of triand tetrasaccharides in honey. Food Chem. 120: 637-642 (2010) https://doi.org/10.1016/j.foodchem.2009.10.050
  14. Korean Society of Food Science and Technology. Differential refractometer. Available from: http://terms.naver.com/entry.nhn?cid =414&docId=294837&mobile&categoryId=414. Accessed January 28, 2013.
  15. Harvey DJ. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J. Chromatogr. B 879: 1196-1225 (2011) https://doi.org/10.1016/j.jchromb.2010.11.010
  16. Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I. Derivation of carbohydrates for GC and GC-MS analyses. J. Chomatogr. B 879: 1226-1240 (2011) https://doi.org/10.1016/j.jchromb.2010.11.013
  17. Doner LW, White JW Jr, Phillips JG. Gas-liquid chromatographic test for honey adulteration by high fructose corn syrup. J. Assoc. Off. Anal. Chem. 62: 186-189 (1979)
  18. Bartolozzi F, Bertazza G, Bassi D, Cristoferi G. Simultaneous determination of soluble sugars and organic acids their trimethylsilyl derivatives in apricot fruits by gas-liquid chromatography. J. Chomatogr. B 758: 99-107 (1997) https://doi.org/10.1016/S0021-9673(96)00709-1
  19. Adams MA, Chen Z, Landman P, Colmer TD. Simultaneous determination by capillary gas chromatography of organic aicd, sugar and sugar alcohol in plant tissue extracts as their trimethylsilyl derivatives. Anal. Biochem. 266: 77-84 (1999) https://doi.org/10.1006/abio.1998.2906
  20. Codex Alimentarius Committee. Codex guidelines for the establishment of a regulatory programme for control of veterinary drug residues in foods, AC/GL 16. Codex, Rome, Italy. pp. 1-46 (1993)
  21. Kim JB, Kim JS, Choi O, Jo JO, Lee OR, Chae MS, Jung KS. Studies on the quality assessment and characteristics of honey. The Report for Institute of Health and Environment in Daegu 5: 144-166 (1994)
  22. Kim ES, Lee JO. Analysis and quantitation of di-trisaccharides in native-bee honeys using capillary gas chromatography. Korean J. Food Sci. Technol. 27: 605-611 (1995)

Cited by

  1. Quality Properties of Honey in Korean Commercial Markets vol.46, pp.4, 2014, https://doi.org/10.9721/KJFST.2014.46.4.432
  2. Isolation of Anticarcinogenic Isoflavone-conjugated Glycoproteins from a Submerged Liquid Culture of Agaricus blazei Mycelia by the Autolysis Process vol.24, pp.12, 2014, https://doi.org/10.5352/JLS.2014.24.12.1316