DOI QR코드

DOI QR Code

Physiological Changes of Saccharomyces cerevisiae by High Voltage Pulsed Electric Field Treatments

고전압 펄스 전기장 처리에 의한 Saccharomyces cerevisiae의 생리적 변화

  • Park, Hee Ran (Department of Traditional Food Industry, JeonJu University) ;
  • Yoon, So Jung (Department of Traditional Food Industry, JeonJu University) ;
  • Park, Han-Sul (Department of Traditional Food Industry, JeonJu University) ;
  • Shin, Jung-Kue (Department of Korean Cuisine, JeonJu University)
  • 박희란 (전주대학교 전통식품산업학과) ;
  • 윤소정 (전주대학교 전통식품산업학과) ;
  • 박한설 (전주대학교 전통식품산업학과) ;
  • 신정규 (전주대학교 한식조리학과)
  • Received : 2013.02.13
  • Accepted : 2013.06.22
  • Published : 2013.10.31

Abstract

High voltage pulsed electric fields (PEF) treatment is a promising non-thermal processing technology that can replace or partially substitute for thermal processes. The aim of this research was to investigate the microbial inactivation mechanisms by PEF treatment in terms of physiological changes to Saccharomyces cerevisiae. PEF was applied at the electric field strength of 50 kV/cm, treatment time of 56 ${\mu}s$ and temperature of $40^{\circ}C$. The microbial cells treated with PEF showed loss of salt tolerance on the cell membrane and collapse of the relative pH gradient on in-out of cells. Cell death or injury resulted from the breakdown of homeostasis, decreased $H^+$-ATPase activity, and loss of glycolysis activity.

고전압 펄스 전기장 기술은 가열 공정을 대체할 수 있는 비가열 살균기술로서 꾸준한 연구가 이루어지고 있는 기술이다. 본 실험에서는 미생물의 생리적 측면에서 고전압 펄스 전기장 처리에 의한 효모의 생리적 변화를 살펴보았다. 내염성의 변화를 측정한 결과 사멸하지 않은 세포의 90-99% 이상이 세포 손상에 의해 내염성을 소실하였으며, 내염성을 회복하는데 약 4-6시간의 시간이 걸렸다. 고전압 펄스 전기장 처리 초기에는 세포 내외의 pH 구배(${\Delta}pH$)가 차이가 컸으나 처리시간이 증가함에 따라 그 차이가 감소하였다. 이는 세포의 pH 항상성을 유지시키는 $H^+$-traslocation 기능을 담당하고 있는 $H^+$-ATPase 활성이 소실되었거나 세포막 자체가 손상되어 pH 항상성을 잃어버렸기 때문으로, 이는 고전압 펄스 전기장 처리한 세포의 $H^+$-ATPase의 활성이 초기부터 크게 감소하는 것으로 확인할 수 있었다. 또한 세포의 해당활성이 고전압 펄스 전기장 처리에 의해 크게 감소하여 세포의 대사 기능이 손상되는 것을 확인하였다.

Keywords

References

  1. Castro AJ, Barbosa-Canovas GV, Swanson BG. Microbial inactivation of foods by pulsed electric fields. J. Food Process. Pres. 17: 47-73 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00225.x
  2. Qin BL, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GC, Swanson BG. Food pasteurization using high-intensity pulsed electric fields. Food Technol.-Chicago 49: 55-60 (1995)
  3. Leistner G, Gorris LGM. Food preservation by combined processes. FLAIR Final Report, EUR 15576 EN, 100 pp. Brussels: European Commission, DG (1994)
  4. Monfort S, Saldana G, Condon S, Raso J, Alvarez I. Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 30: 393-399 (2012) https://doi.org/10.1016/j.fm.2012.01.004
  5. Zhu Z, Bals O, Grimi N, Ding L, Vorobiev E. Qualitative characteristics and dead-end ultrafiltration of chicory juice obtained from pulsed electric field treated chicories. Ind. Crop. Prod. 46: 8-14 (2013) https://doi.org/10.1016/j.indcrop.2013.01.014
  6. Puertolas E, Cregenzan O, Luengo E, Alvarez I, Raso J. Pulsed electric field assisted extraction of anthocyanins from purplefleshe potato. Food Chem. 136: 1330-1336 (2013) https://doi.org/10.1016/j.foodchem.2012.09.080
  7. Mhemdi H, Grimi N, Bals O, Lebovka NI, Vorobiev E. Effect of apparent density of sliced food particles on the efficiency of pulsed electric field treatment. Innov. Food Sci. Emerg. 18: 115-119 (2013) https://doi.org/10.1016/j.ifset.2012.12.008
  8. Turk MF, Vorobiev E, Baron A. Improving apple jucie expression and quality by pulsed electric field on an industrial scale. LWTFood Sci. Technol. 49: 245-250 (2012)
  9. Knorr D, Geulen M, Grahl T, Sitzmann W. Food application of high electric field pulses. Trend. Food Sci. Tech. 5: 71-75 (1994) https://doi.org/10.1016/0924-2244(94)90240-2
  10. Pothakamury UR. Preservation of food by nonthermal processes. PhD thesis, Washington State University, Pullman, WA, USA (1995)
  11. Harrison SL. High intensity pulsed electric field and high hydrostatic pressure processing of apple juice. PhD thesis, Washington State University, Pullman, WA, USA (1996)
  12. Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys. J. 14: 881-899 (1974) https://doi.org/10.1016/S0006-3495(74)85956-4
  13. Marx G, Moody A, Bermudez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication. Int. J. Food Microbiol. 151: 327-337 (2011) https://doi.org/10.1016/j.ijfoodmicro.2011.09.027
  14. Gallo LI, Pilosof AMR, Jagus RJ. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng. 79: 188-193 (2007) https://doi.org/10.1016/j.jfoodeng.2006.01.043
  15. Delorme E. Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microb. 55: 2242-2246 (1989)
  16. Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed mil. Int. J. Food Microbiol. 51: 31-38 (1999) https://doi.org/10.1016/S0168-1605(99)00071-9
  17. Slavik J. Intracellular pH of yeast cells measured with fluorescent probe. FEBS Lett. 140: 22-26 (1982) https://doi.org/10.1016/0014-5793(82)80512-7
  18. Bender GR, Marquis RE. Membrane ATPases and acid tolerance of Actinomyces viscous and Lactobacillus casei. Appl. Environ. Microb. 53: 2124-2128 (1987)
  19. Hong SI, Pyun YR. Membrance damage and enzyme inactivation of Lactobacillus plantarum by high pressure $CO_{2}$ treatment. Int. J. Food Microbiol. 63: 19-28 (2001) https://doi.org/10.1016/S0168-1605(00)00393-7
  20. Bender GR, Sutton SVW, Marquis RE. Acid tolerance, proton permeabilities and membrane ATPases of oral streptococci. Infect. Immun. 53: 331-338 (1986)
  21. Poole RK. The isolation of membranes from bacteria. vol. 19, pp. 109-122. In: Biomembrane Protocols. Graham J, Higgins J (eds). Humana Press Inc., New York, NY, USA (1993)
  22. Simpson RK, Whittington R, Earnshaw RG, Russell NJ. Pulsed high electric field causes 'all or nothing' membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target. Int. J. Food Microbiol. 48: 1-10 (1999) https://doi.org/10.1016/S0168-1605(99)00022-7
  23. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400 (1925)
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  25. Markwell MAK, Hass SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210 (1978) https://doi.org/10.1016/0003-2697(78)90586-9
  26. Humble MW, King A, Phillips I. APIZYM: a simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol. 30: 275-277 (1977) https://doi.org/10.1136/jcp.30.3.275
  27. Przybylski KS, Witter LD. Injury and recovery of Escherichia coli after sublethal acidification. Appl. Environ. Microb. 37: 261-265 (1979)
  28. Iandolo JJ, Ordal ZJ. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91: 134-142 (1966)
  29. Hurst A. Bacterial injury: A review. Can. J. Microbiol. 23: 935-944 (1977) https://doi.org/10.1139/m77-139
  30. Shin JK, Pyun YR. Inactivation of Lactobacillus plantarum by pulsed microwave irradiation. J. Food Sci. 62: 163-166 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04391.x
  31. Mitchell P. Moyle J. Osmotic structure and function in bacteria. Symp. Soc. Gen. Microbiol. 6: 150-180 (1956)
  32. Pina-Perez MC, Rodrigo D, Lopez AM. Sub-lethal damage in Cronobacter sakazakii subsp. sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control 20: 1145-1150 (2009) https://doi.org/10.1016/j.foodcont.2009.03.006
  33. Zhao W, Yang R, Shen X, Zhang S, Chen X. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control 32: 6-12 (2013) https://doi.org/10.1016/j.foodcont.2012.11.029
  34. Rozes N, Peres C. Effect of oleuropein and sodium chloride on viability and metabolism of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 45: 839-843 (1996) https://doi.org/10.1007/s002530050771
  35. Dreyfuss HS, Chipley JR. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microb. 39: 13-16 (1980)
  36. Garcia MJ, Rios G, Ali R, Belles JM, Serrano R. Comparative physiology of sal tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 143: 1125-1131 (1997) https://doi.org/10.1099/00221287-143-4-1125
  37. Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 296: 8792-8796 (1994)
  38. Somolinos M, Manas P, Condon S, Pagan R, Garcia D. Recovery of Saccharomyces cerevisiae sublethally injured cells after pulsed electric fields. Int. J. Food Microbiol. 125: 352-356 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.04.023
  39. Khalil H, Villota R. Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J. Food Protect. 51: 181-186 (1988)
  40. Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. PhD thesis, Yonsei University, Seoul, Korea (1997)
  41. Albert SG. Biochemical aspects of yeasts. pp. 33-46. In: Yeast Technology. Reed G, Peppler HJ (eds). Westport, CN, USA (1973)
  42. Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125-147 (1993) https://doi.org/10.1111/j.1574-6976.1993.tb00015.x
  43. Tanino T, Sato S, Oshige M, Ohshima T. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. J. Electrostat. 70: 212-216 (2012) https://doi.org/10.1016/j.elstat.2012.01.003
  44. Foster JW, Cowan RM, Magg TA. Rupture of bacteria by explosive decompression. J. Bacteriol. 83: 330-334 (1962)
  45. Jung S, Lowe SE, Hollingsworth RI, Zeikus JG. Sarcina ventriculi synthesizes very long chain dicarboxylic acids in response to different forms of environmental stress. J. Biol. Chem. 268: 2828-2835 (1993)
  46. Booth IR. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359-378 (1985)
  47. Kobayashi H, Suzuki T, Unemoto T. Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton translocating ATPase. J. Biol. Chem. 261: 627-630 (1986)
  48. Kashket ER. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerence. FEMS Microbiol. Lett. 46: 233-244 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
  49. Hutkins RW, Nannen NL. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77573-6
  50. Futai M, Kanazawa H. Structure and function of proton-traslocating adenosine triphosphatase ($F_{0}F_{1}$) biochemical and molecular biological approaches. Microbiol. Rev. 47: 285-312 (1983)
  51. Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase ($F_{0}F_{1}$): purification and reconstitution of $F_{0}$ complexs and biochemical and functional characterization of their subunits. Microbiol. Rev. 51: 477-497 (1987)
  52. Zhao W, Yang R, Zhang HQ. Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci. Tech. 27: 83-96 (2012) https://doi.org/10.1016/j.tifs.2012.05.007
  53. Ho SY, Mittal GS, Cross JD. Effects of high field electric pulses on the activity of selected enzymes. J. Food Eng. 31: 69-84 (1997) https://doi.org/10.1016/S0260-8774(96)00052-0
  54. Shin JK. Inactivation of Saccharmyces cerevisiae by high voltage pulsed electric fields treatment. PhD thesis, Yonsei University, Seoul, Korea (2000)
  55. Shin JK. Nonthermal sterilization of foods using high power electrical energy (D10-3). In: 2013 Annual Meeting of Korean Society of Food Science and Technology. August 28-30, Cheonan Art Center, Cheonan, Korea. The Korean Society of Food Science and Technology, Seoul, Korea (2013)