DOI QR코드

DOI QR Code

Toxic Effects of Arsenic and Chromium on the Fertilization and Embryo Development Rates in the Sea Urchin (Hemicentrotus pulcherrimus)

말똥성게(Hemicentrotus pulcherrimus)의 수정 및 배아 발생률에 대한 비소와 크롬의 독성영향

  • Hwang, Un-Ki (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Ryu, Hyang-Mi (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Yu, Jun (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center) ;
  • Kang, Han-Seung (National Fisheries Research & Development Institute, West Sea Fisheries Research Institute, Marine Ecological Risk Assessment Center)
  • 황운기 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 류향미 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 유준 (국립수산과학원 서해수산연구소 해양생태위해평가센터) ;
  • 강한승 (국립수산과학원 서해수산연구소 해양생태위해평가센터)
  • Received : 2013.02.18
  • Accepted : 2013.04.04
  • Published : 2013.06.30

Abstract

Toxic effects of arsenic (As) and chromium (Cr) has been investigated using the sea urchin (Hemicentrotus pulcherrimus) germ cell and pluteus-larvae. The gametotoxic and embryotoxic effects of As and Cr on H. plucherrimus were each investigated at 6.25, 12.5, 25, 50, 100. Spawning was induced by 0.5 M KCl solution and the normal fertilization and embryogenesis rates were performed for 10 min and 64 hrs after fertilization, respectively. The normal fertilization and embryogenesis rates in the control condition (not including As and Cr) were greater than 94% and 93%, respectively. The fertilization rate was not significantly changed compared with control but embryogenesis rate was significantly decreased with concentration-dependent manner. As and Cr reduced normal embryogenesis rates and a significant reduction occurred at concentration greater than 6.25 ppb (P<0.01) and 25 ppb (P<0.05), respectively. The lowest-observedeffect- concentration (LOEC) of normal embryogenesis rate in As and Cr were each 6.25 and 25 ppb, respectively. From these results, normal embryogenesis rate of H. pulcherrimus have toxic effect at greater than the 6.25 ppb concentration of As and 25 ppb concentration of Cr in marine ecosystems. These results suggest that the normal embryogenesis rates of H. pulcherrimus are very useful test method for the toxicity assessment of heavy metal as As and Cr in marine ecosystems.

말똥성게 (Hemicentrotus pulcherrimus)의 생식세포 및 pluteus 유생을 이용하여 중금속인 Arsenic (As)와 Chromium (Cr)이 정상 수정률 및 배아 발생률에 미치는 독성 영향을 조사하였다. H. pulcherrimus의 수정률 및 배아 발생률에 미치는 As와 Cr의 독성은 6.25, 12.5, 25, 50, 100 ppb의 농도에서 조사하였다. 0.5 M KCl 용액을 이용하여 방란 및 방정을 유도하였고, 정상 수정률 및 배아발생률은 수정 후 각각 10분 및 64시간째 관찰하였다. As와 Cr을 첨가하지 않은 대조구에서 정상 수정률과 배아 발생률은 각각 94%와 93% 이상을 나타냈다. 이들 중금속 첨가에 의해 수정률은 아무런 변화가 나타나지 않았지만 배아 발생률은 농도 의존적 감소하는 것으로 나타났으며, As의 첨가에 의해 배아 발생률은 6.25 ppb에서 유의적으로 감소하였으며 (P<0.01), Cr의 경우는 25 ppb에서 유의적인 감소를 나타냈다 (P<0.05). H. pulcherrimus의 정상 배아 발생률에 대한 LOEC는 As의 경우는 6.25 ppb를 Cr은 25 ppb를 나타냈다. 이들 연구결과로 해양생태계 내에서 As가 6.25 ppb, Cr이 25 ppb를 초과하는 농도일 때는 H. pulcherrimus와 같은 무척추동물의 정상 부화율은 급격히 감소할 것으로 판단된다. 본 연구결과를 바탕으로, H. pulcherrimus의 정상 배아 발생률을 이용한 생물학적 평가방법은 중금속과 같은 유해물질에 대한 해양생태계의 영향을 판단하기 위한 시험방법으로 유용하게 이용될 수 있을 것으로 판단된다.

Keywords

References

  1. Ahlf W, H Holler, H Neumann-Hense and M Ricking. 2002. A guidance for the assessment and evaluation of sediment quality: A german approach based on ecotoxicological and chemical measurements. J. Soils Sediment 2:37-42. https://doi.org/10.1007/BF02991249
  2. Atici T, S Ahiska, A Altindag and D Aydin. 2008. Ecological effect of some heavy metals (Cd, Pb, Hg, Cr) pollution of phytoplanktonic algae and zooplanktonic organisms in Sariyar Dam Reservoir in turkey. Afr. J. Biotechnol. 7:1972-1977. https://doi.org/10.5897/AJB2008.000-5044
  3. Bae ON, MY Lee, SM Chung, JH Ha and JH Chung. 2006. Potential risk to human health by arsenic and its metabolite. J. Environ. Toxicol. 21:1-11. https://doi.org/10.1002/tox.20149
  4. Beiras R, N femandez, J Bellas, V Besada, A Gonzalez-Quijano and T Nunes. 2003. Inttegrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel Chemosphere 52:1209-1224. https://doi.org/10.1016/S0045-6535(03)00364-3
  5. Beiras R and M Albentosa. 2004. Inhibition of embryo development of the commercial bivalves Ruditapes decussatus and Mytilus galloprovincialis by trace metals; Implication for the implementation of seawateer quality criteria. Aquaculture 230:205-213. https://doi.org/10.1016/S0044-8486(03)00432-0
  6. Bhattacharyya R, D Chatterjee, B Nath, J Jana, G Jacks and M Vahter. 2003. High arsenic groundwater: mobilization, metabolism and mitigation-an overview in the Bengal Delta Plain. Mol. Cell Biochem. 253:347-355. https://doi.org/10.1023/A:1026001024578
  7. Bidwell JR, KW Wheeler and TR Burridge. 1998. Toxicant effects on the zoospore stage of the marine macroalga Ecklonia radiata (Phaeophyta: Laminariales). Mar. Ecol. Prog. Ser. 163:259-265. https://doi.org/10.3354/meps163259
  8. Caceres DD, P Pino, N Montesinos, E Atalah, H Amigo and D Loomis. 2005. Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ. Res. 98:151-159. https://doi.org/10.1016/j.envres.2005.02.007
  9. Choi HG, JS Park and PY Lee. 1992. Study on the heavy metal concentration in mussel and oyster from the Korean coastal water. Bull. Korean Fish. Soc. 25:485-494.
  10. Choi KY, SH Kim, GH Hong and HT Chon. 2012. Distributions of heavy metals in the sediments of South Korean harbors. Environ. Geochem. Health 34:71-82. https://doi.org/10.1007/s10653-011-9413-3
  11. Chu KW and KL Chow. 2002. Synergistic toxicity of multiple heavy metal is revealed by a biological assay using a nematode and its transgenic derivative. Aquat. Toxicol. 61:53-64. https://doi.org/10.1016/S0166-445X(02)00017-6
  12. DeForest DK, KV Brix and WJ Adams. 2007. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 84:236-246. https://doi.org/10.1016/j.aquatox.2007.02.022
  13. Dinnel PA, JM Link, QJ Stober, MW Letourneau and WE Roberts. 1989. Comparative sensitivity of sea urchin sperm bioassay to metals and pessticides. Com. Toxi. 18:748-755.
  14. Fathallah S, MN Medhioub, A Medhioub and M Kraiem. 2010. Toxicity of Hg, Cu and Zn on early developmental stages of the European clam (Ruditapes decussatus) with potential application in marine water quality assessment. Environ. Monit. Assess. 171:661-669. https://doi.org/10.1007/s10661-010-1311-0
  15. Franchet C, M Goudeau and H Goudeau. 1997. Mercuric ions impair the fertilisation potential, the resumption of meiosis, the formation of male pronucleus, and increase polyspermy, in the egg of the ascidian Phallusia mammillata. J. Exp. Zool. 278:255-272. https://doi.org/10.1002/(SICI)1097-010X(19970701)278:4<255::AID-JEZ7>3.0.CO;2-O
  16. Gebel TW. 1999. Arsenic and drinking water contamination. Science 283:1458-1459.
  17. Geffard OE, H His, JF Budzinski, A Chiffoleau, Coynel and H Etcheber. 2004. Effects of storage method and duration on the toxicity of marine sediments to embryos of Crassostrea gigas oysters. Environ. Pollut. 129:457-465. https://doi.org/10.1016/j.envpol.2003.11.014
  18. Gopalakrishnan S, H Thilagam and PV Raja. 2007. Toxicity of heavy metals on embryogenesis and larvae of marine sedentary polychaete Hydroides elegans. Arch. Environ. Contam. Toxicol. 52:171-178. https://doi.org/10.1007/s00244-006-0038-y
  19. Gopalakrishnan S, H Thilagam and PV Raja. 2008. Comparison of heavy metal toxicity in life stafes (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere 71:515-528. https://doi.org/10.1016/j.chemosphere.2007.09.062
  20. Greewood PJ. 1983. The influence of an oil dispersant chemserve OSE-DH on the viability of sea urchin gametes. Combined effects of tmperature, concentration and exposure time on fertilization. Aqua. Toxicol. 4:15-29. https://doi.org/10.1016/0166-445X(83)90058-9
  21. Han TJ, YS Han, GS Park and SM Lee. 2008. Development marine ecotoxicological standard methods for Ulva sporulation test. Kor. J. Soc. Ocean. 13:121-128.
  22. Hwang UK, CW Lee, SM Lee, KH An and SY Park. 2008. Effects of salinity and standard toxic metal (Cu, Cd) on fertilization and embryo development in the sea urchin (Strongylocentrotus nudus). J. Environ. Sci. 17:775-781.
  23. Hwang UK, CW Rhee, KS Kim, KH An and SY Park. 2009. Effects of salinity and standard toxic metal (Cu, Cd) on fertilization and embryo development rates in the sea urchin (Hemicentrotus pulcherrimus). J. Environ. Toxicol. 24:9-16.
  24. Hwang UK, HM Ryu, YH Choi, SM Lee and HS Kang. 2011. Effect of cobalt (II) on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). J. Fac. Agr. Kyushu Univ. 29:251-257.
  25. Hwang UK, S Heo, JS Park and HS Kang. 2012. Effects of lead and zinc on the fertilization and embryo development of the sea urchin (Hemicentrotus pulcherrimus). Korean J. Environ. Biol. 30:128-135.
  26. Irving EC, RB Lowell, JM Culp, K Liber, Q Xie and R Kerrich. 2008. Effects of arsenic speciation and low dissolved oxygen condition on the toxicity of arsenic to a lotic mayfly. Environ. Toxicol. Chem. 27:583-590. https://doi.org/10.1897/06-617.1
  27. Kobayashi N. 1971. Fertilized sea urchin egg as an indicatory material for marine pollution bioassay preliminary experiment. Publ. Seto. Mar. Biol. Lab. 19:379-406.
  28. Kobayashi N. 1977. Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ. Seto. Mar. Biol. Lab. 24:9-21. https://doi.org/10.5134/175965
  29. Kobayashi N. 1981. Comparative toxicity of carious chemicals, oil extracts and oil dispersant extracts to canadian and japanese sea urchin egg. Publ. Seto. Mar. Biol. Lab. 26:123-133. https://doi.org/10.5134/176019
  30. Kobayashi N. 1994. Application of eggs of the sea urchin (Diadema Setosum) in marine pollution bioassays. Phuket Mar. Biol. Cent. Res. Bull. 59:91-94.
  31. Lamm Sh, A Engel, MB Kruse, M Feinleib, DM Byrd, S Lai and R Wilson. 2004. Arsenic in drinking water and bladder cancer mortality in the United States: an analysis based on 133 U.S. counties and 30 years of observation. J. Occup. Environ. Med. 46:298-306. https://doi.org/10.1097/01.jom.0000116801.67556.8f
  32. Lee SH and KW Lee. 1984. Heavy metals in mussels in the Korean coastal waters. J. Oceanol. Soc. Korea 19:111-117.
  33. Lewis DR, JW Southwick, R Ouellet-Hellstrom, J Rench and RL Calderon. 1999. Drinking water arsenic in Utah: A cohort mortality study. Environ. Health Prespect. 1017:359-365.
  34. Lonning S and BH Hagstrom. 1975. The effects of oil dispersants on the cell in the fertilization and development. Norw. J. Zool. 23:131-134.
  35. Martin JM and M Whitfield. 1983. The significance of river imput of chemical elements to the ocean. In Trace Metals in sea Water. Plenum Press. New York. pp.265-296.
  36. Martin M, KE Osborn, P Bilig and N Glicksten. 1981. Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull. 12:305-308. https://doi.org/10.1016/0025-326X(81)90081-3
  37. Okubo K and T Okubo. 1962. Study on the bioassay method for the evalution of water pollution-II, Use of the fertilized eggs of sea urchins and bibalves. Bull. Toka. regional Fish Res. Lab. 32:13-140.
  38. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985a. Ph-induced changes in mitotic and develomental patterns in sea urchin embryogenesis, I. Exposure of embryos. Terato. Carcino. Mutage. 5:101-112. https://doi.org/10.1002/tcm.1770050204
  39. Pagono G, M Cipollaro, G Corsale, A Esposite, E Ragucciand and GG Giordano. 1985b. Ph-induced changes in mitotic and develoment patterns in sea urchin embryogenesis, II. Exposure of sperm. Terato. Carcino. Mutage. 5:113-121. https://doi.org/10.1002/tcm.1770050205
  40. Phillips DJH and DA Segar. 1986. Use of bioindicators in monitoring conservative contaminants. Mar. Pollut. Bull. 17:10-15. https://doi.org/10.1016/0025-326X(86)90797-6
  41. Reiley MC. 2007. Science, policy and trends of metals risk assessment at EPA: howunderstanding metals bioavailability has chang metals risk assesment at USEPA. Aquat. Toxi-col. 84:292-298. https://doi.org/10.1016/j.aquatox.2007.05.014
  42. Sivakumar S and CV Subbhuraam. 2005. Toxicity of chromium (III) and chromium (VI) to the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf. 105:51-58.
  43. Suh KH, KH Ahn, HS Lee, HG Lee, JK Cho and YK Hong. 1999. Biosorption of Pb abd Cr by using Sargassum sagamianum. J. Korean Fish Soc. 32:399-403.
  44. Warnau M, M Iacarino, A de Biase, A Temara, M Jangoux, P Dubois and G Pagano. 1996. Spermiotoxicity and embryotoxicity of heavy metals in the echinoid Paracentrotus lividus. Environ. Toxicol. Chem. 15:1931-1936. https://doi.org/10.1002/etc.5620151111
  45. Wui IS, JB Lee and SH Yoo. 1992. Bioassay on marine sediment pollution by using sea urchin embryo culture in the south-west inland sea of Korea. Korean J. Environ. Biol. 10:92-99.
  46. Xia Y and J Liu. 2004. An overview on chronic arsenism via dringking water in PR China. Toxicology 198:25-29. https://doi.org/10.1016/j.tox.2004.01.016
  47. Xu L, H Tian, W Wang and S Ru. 2012. Effects of monocrotophos pesticide on serotonin metabolism during early development in the sea urchin, Hemicentrotus pulcherrimus. Environ. Toxicol. Pharmacol. 34:537-547. https://doi.org/10.1016/j.etap.2012.06.014
  48. Yap CK, A Ismail and SG Tan. 2004. Heavy metal (Cd, Cu, Pb and Zn) concentraions in the green-lipped mussel Perna viridis collected from some wild and aquacultural sites in the west coast of Peninsular Malaysia. Food Chem. 84:569-575. https://doi.org/10.1016/S0308-8146(03)00280-2
  49. Yu CM. 1998. A study on the effect of heavy metals on embryos formation of sea urchins. Kor. J. Env. Hlth. Soc. 24:6-10.