DOI QR코드

DOI QR Code

Effect of Dissolved Oxygen on Occurrence of Tunic Softness Syndrome in Sea Squirt Halocynthia roretzi, Tongyeong, South Coast of Korea

멍게의 물렁증 발생에 미치는 용존산소의 영향

  • Shin, Yun Kyung (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Park, Jung Jun (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Jun, Je Cheon (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Myeong, Jeong-In (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Yang, Sung Jin (Aquaculture Management Division, Aquaculture Research Institute, NFRDI)
  • 신윤경 (국립수산과학원 양식관리과) ;
  • 박정준 (국립수산과학원 양식관리과) ;
  • 전제천 (국립수산과학원 양식관리과) ;
  • 명정인 (국립수산과학원 양식관리과) ;
  • 양성진 (국립수산과학원 양식관리과)
  • Received : 2013.06.24
  • Accepted : 2013.09.04
  • Published : 2013.09.30

Abstract

This study analyzed the occurrence of tunic softness, survival rate, metabolic rate and histopathologic changes arising from the effect of hypoxic environment in order to find the causes of occurrences of tunic softness, which manifests as the key phenomenon of mass mortality of Halocynthia roretzi. Regarding the survival of H. roretzi with reduction in dissolved oxygen, all the entities died on the 4th day of exposure to the dissolved oxygen concentration of $2mg\;L^{-1}$ while 50% mortality was observed on the 5th day of exposure to the dissolved oxygen concentration of $3mg\;L^{-1}$. Therefore the 5 days-$LC_{50}$ was found to be $3.55mg\;L^{-1}$ (1.86~$4.96mg\;L^{-1}$). However, occurrence of tunic softness was not observed during the period of exposure to low oxygen concentration. The oxygen consumption rate significantly decreases at the dissolved oxygen concentration of less than $5mg\;L^{-1}$ in comparison to the control group. Therefore, it is presumed that H. roretzi controls the respiration rate for prescribed period of time when exposed to hypoxic environment. Regarding the histopathologic changes in the gill, digestive gland and cyst of H. roretzi due to hypoxic environment, necrosis of epithelial layer, in filtration of blood cells, and condensation of nucleus that compose each of the organs were observed. Regarding morphological changes, the decrease in volume with shrinking of the tunic, discoloration of the internal organs and necrosis of gill and hepatopancreas were observed.

본 연구는 멍게 대량폐사의 주요 현상으로 나타나고 있는 물렁증 발생의 원인을 찾기 위하여 저산소의 영향에 의한 물렁증 발생, 생존률, 대사율 및 병리조직학적 변화를 분석하였다. 용존산소의 감소에 따른 멍게의 생존률은 용존산소 농도 $2mg\;L^{-1}$에서 노출 4일째 모두 폐사하였으며, $3mg\;L^{-1}$에서는 노출 5일째 50%를 나타내어 5days-$LC_{50}$$3.55mg\;L^{-1}$ (1.86~$4.96mg\;L^{-1}$)로 나타났다. 그러나 저산소에 노출된 기간 동안 물렁증 발생은 관찰되지 않았다. 산소소비율은 대조구와 비교하여 용존산소 농도 $5mg\;L^{-1}$ 이하에서 유의하게 감소하여 저산소에 노출되면 일정기간 호흡률을 조절하는 것으로 추정된다. 저산소에 의한 멍게의 새낭, 소화선 및 피낭의 병리조직학적인 변화는 각 기관을 구성하고 있는 상피 세포층의 괴사, 혈구세포의 침윤, 세포핵 응축 및 변형 등이 관찰되었다. 형태적인 변화는 피낭이 쪼글어들어 부피가 작아지고 내부 기관은 탈색되고 아가미와 간췌장의 괴사가 관찰되었다.

Keywords

References

  1. Aquacop EB and C Soyez. 1988. Effects of dissolved oxygen concentration on survival and growth of Penaeus vannamei and Penaeus stylirostris. J. World Aquacult. Soc. 19:12A.
  2. Armsworthy SL, BA MacDonald and JE Ward. 2001. Feeding activity, absorption efficiency and suspension feeding processes in the ascidian, Halocynthia pyriformis (Stolodobranchia: Ascidiacea): responses to variations in die quantity and qualitity. J. Exp. Mar. Biol. Ecol. 260:41-69.
  3. Bayne BL. 1973. The responses of three species of bivalve mollusc to declining oxygen tension at reduced salinity. Comp. Biochem. Physiol. 45A:793-806.
  4. Bayne BL and RC Newell. 1983. Physiological energetics of marine molluscs. In the mollusca, Vol. 4 (Wilbur KM and AS Saleuddin eds.). Academic Press, New York. pp. 407-515.
  5. Bohle B. 1972. Effects of adaptation to reduced salinity on filtration activity and growth of mussels (Mytilus edulis). J. Exp. Mar. Biol. Ecol. 10:41-49. https://doi.org/10.1016/0022-0981(72)90091-3
  6. Choi DL, BY Jee, HJ Choi, JY Hwang, JW Kim and FCj Berthe. 2006. First report on histology and ultrastructure of an intrahemocytic paramyxean parasite (IPP) from tunicate Halocynthia roretzi in Korea. Dis. Aquat. Organ. 72:65-69. https://doi.org/10.3354/dao072065
  7. deFur PL, CP Mangum and JE Resse. 1990. Respiratory responses if the blue crab Callinects sapidus in long term hypoxia. Biol. Bull. 178:46-54. https://doi.org/10.2307/1541536
  8. DeZwaan A and TCM Wijsman. 1976. Anaerobic metabolism in bivalvia (Mollusca). Characteristics of anaerobic metabolism. Comp. Biochem. Physiol. 54B:313-317.
  9. Finney DJ. 1971. Probit analysis, 3rd. pp. 333. Cambridge University Press, London.
  10. Herreid CF. 1980. Hypoxia in invertebrates. Comp. Biochem. Physiol. 67A:311-320.
  11. Hirai E. 1941. An outline of the development of Halocynthia roretzi Drasche. Sci. Rep. Tohoku Imp. Univ. Biol. 16:217-232.
  12. Hirai E. 1965. On the changes of the adhesive papillae of the larvae of an ascidian Halocynthia roretzi. Bull. Mar. Biol. St. Asamushi. 12:9-11.
  13. Jang YJ. 1979. Studies on the early growth of the sea squirt, Halocynthia roretzi (Drasche). Bull. Fish. Res. Dev. Agency 21:69-76. (in Korean)
  14. Jiang AL, J Lin and CH Wang. 2008. Physiological energetics of the ascidian Styela clava in relation to body size and temperature. Comp. Biochem. Physiol. part A 149:129-136. https://doi.org/10.1016/j.cbpa.2006.08.047
  15. Kim BS, JD Bang, HY Ryu, JP Hong and EY Chung. 2001. Gametogenesis, Gonadal Development and Maturation of the Sea Squirt, Halocynthia roretzi. Dev. Reprod. 5:137-144.
  16. Kim SH, HO Yang, YK Shin and HC Kwon. 2012. Hasllibacter halocynthiae gen.nov., sp. nov., a nutriacholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi. Internal J. System. Evo. Micro. 62:624-631. https://doi.org/10.1099/ijs.0.028738-0
  17. Kumagai A, A Suto, H Ito, T Tanabe, JY Song, Kitamura, SI Hirose, ET Kamaishi and S Miwa. 2010. Soft tunic syndrome in the edible ascidian Halocynthia roretzi is caused by a kinetoplastid protist. Dis. Aquat. Org. 95:153-161, 2011.
  18. Kumagai, A, A Suto, H Ito, T Tanabe, K Takahashi, T Kamaishi and S Miwa. 2010. Mass mortality of cultured ascidians Halocynthia roretzi associated with softening of the tunic and flagellate-like cells. Dis. Aquat. Org. 90:223-234. https://doi.org/10.3354/dao02228
  19. Maruo NA and SR Malecha. 1984. The effect of hypoxia on blood pH and lactate levels in Macrobrachiium rosenbergii (de Man). Comp. Biochem. Physiol. 77A:627-630.
  20. McMahon BR, WW Buggen and EW Taylor. 1978. Acid-base changes during recovery from disturbance and during long term hypoxic exposure in the lobster, Homarus vulgaris. J. Exp. Zool. 205:361-370. https://doi.org/10.1002/jez.1402050304
  21. Morris S and SL Butler. 1996. Hemolymph respiratory gas, acid and ion status of the amphibious purple shore crab Leptograpsus variegates (Fabricus) during immersion and environmental hypoxia. J. Crust. Biol. 16:253-266.
  22. Pamatmat MM. 1980. Faculaive anaerobiosis of benthos. In, marine benthic dymanics, edited by K.R. Tenore and B.C. Coull, University of south Carolina, Columbia. pp. 69-90.
  23. Ryland JS. 1990. A circadian rhythm in the tropical ascidian Diplosoma virens (Ascidiacea : Didemnidae). J. Exp. Mar. Biol. Ecol. 138:217-225. https://doi.org/10.1016/0022-0981(90)90168-C
  24. Shin YK, BH Kim, BS Oh, CG Jung, SG Sohn and JS Lee. 2006. Physiological responses of the ark shell Scapharca broughtonii (Bivalvia: Arcidae) to decrease in salinity. J. Fish. Sci. Technol. 9:153-159.
  25. Shin YK, HJ Kim, KI Park, JC Jun and EO Kim. 2011. Occurrence of bi-flagellated protists in the tunics of ascidians Halocynthia roretzi with tunic-softness syndrome collected from Tongyeong, south coast of Korea. J. Fish Pathol. 24: 197-204. https://doi.org/10.7847/jfp.2011.24.3.197
  26. Shin YK, JC Jun, EO Kim and YB Hur. 2011. Physiological changes and energy budget of the sea squirt Halocynthia roretzi from Tongyeong, South Coast of Korea, Korean J. Fish. Aqua. Sci. 44:366-371.
  27. Shin YK, TS Moon and CH Wi. 2002. Effects of the dissolved oxygen concentration on the physiology of the Manila clam, Tegillarca granosa (Linnaeus). J. Korean Fish. Soc. 35:485-489.
  28. Shin YK, Y Kim and EY Chung. 2001. Effects of the dissolved oxygen concentration on the physiology of the manila clam, Ruditapes philippinarum. J. Korean Fish. Soc. 34:190-193.
  29. Solorzano L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol. Oceanogr. 14: 799-801. https://doi.org/10.4319/lo.1969.14.5.0799
  30. Truchot JP. 1975. Changements de l'tat acide-base du sang en fonction de l'xygénation de l'au chez le crabe Carcinus maenas (L.). J. Physiol. 70:583-592.
  31. Yoo SK, HS Lim and DT Lim. 1988. On the growth of the sea squirt (Halocynthia roretzi) from artificial seed. Korean J. Aquacult. 1:75-84.
  32. Yoo SK, KH Kang and YH Chang. 1990. Influence of water temperature on spawning induction, egg development and sead collection of sea squirt, Halocynthia roretzi. Korean J. Aquacult. 3:79-88.
  33. Wilbur KM and CM Yonge. 1966. Physiology of mollusca. Academic press, New York and London, Volume II, pp. 201-203.
  34. Winddows J. 1985. Physiological procedures. In: The Effects of Stress and Pollution on Marine Animals, Bayne, ed. Academic Press, New York and London, pp. 161-178.