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ABSTRACT

The corpus callosum is the largest connective structure in the brain, and its shape and size are corre-

lated to sex, age, brain growth and degeneration, handedness, musical ability, and neurological diseases.

Manually segmenting the corpus callosum from brain magnetic resonance (MR) image is time consuming,

error prone, and operator dependent. In this paper, two semi-automatic segmentation methods are present:

the active contour model-based approach and the active shape model-based approach. We tested these

methods on an MR image of the human brain and found that the active contour approach had better

segmentation accuracy but was slower than the active shape approach.
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1. INTRODUCTION

The corpus callosum is the largest neural path-

way connecting the two cerebral hemispheres of

the human brain. Its nature and functions are a

topic of interest in neuroimaging studies. Several

medical studies have indicated that the size and

shape of the corpus callosum are correlated to sex,

age, brain growth and degeneration, handedness,

and musical ability [1]. A variety of neurological

diseases, including schizophrenia, autism, mental

retardation, Down’s syndrome, attention deficit

hyperactivity disorder, Alzheimer’s disease, devel-

opmental dyslexia, and developmental language

disorders, are also related to the corpus callosum.

The general shape of the corpus callosum gen-

erally the same in all people and its intensity in

magnetic resonance (MR) images are quite differ-

ent from that of its surroundings. However, it is

difficult to determine its local shape. Also it re-

mains unclear whether a part of the brain called

the fornix located in the mid-sagittal region, con-

tacts the corpus callosum because of the similar

brightness of this two structures. Therefore, man-

ual tracing is still the most common method for

segmenting the corpus callosum [2-4]. However,

manually segmenting the corpus callosum from

brain magnetic resonance (MR) image is time con-

suming, error prone, and operator dependent.

Therefore, it is essential to automate segmentation

to some degree. In this study, we compare two im-

age-segmentation methods: the active contour

model (ACM)-based approach and the active shape

model (ASM)-based approach.

The ACM was introduced by Kass et al. [5] in

1987. ACMs are among the most successful models

for image segmentation, and are widely used in

many applications, including those related to com-
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puter vision, pattern recognition, and medical im-

age processing. The basic idea is to evolve a curve

to segment the desired objects by minimizing en-

ergy functional subject to constraints. The existing

ACMs can be categorized into boundary-based

[6-8], region-based [9-12], and other higher-level

prior-knowledge-based methods [13-15]. Region-

based models offer more advantages than boun-

dary-based ones, because they are less sensitive

to noise and the location of the initial contours.

Accordingly, they do not use an image gradient,

and provide better performance when applied to

image with weak object boundaries. In region-

based segmentation, energy models employ image

statistics that depend on the segmenting curve, us-

ing parametric [11,16,17] and non-parametric

methods [18]. In this work, we propose maximizing

the distance between two distributions to separate

two regions with different probability density

functions, without any prior knowledge of the ob-

ject and background [19].

The ASM was proposed by Cootes et al. [20]

in 1994. This method employs a statistical model

derived from several sample images, and creates

a mean shape model based on them. Significant ei-

genvalues and eigenvectors from all sample images

are also utilized. In this way, the mean shape will

evolve to fit the object to be segmented. ASMs are

commonly used for face recognition [21,22,23] and

medical image segmentation [24]. An ASM is also

called a ‘smart snake’ [25], because it attempts to

deform itself to fit the object, but only in ways that

are consistent with the shapes found in the training

set. Some statistical concepts and procedures, such

as mean value, principal component analysis

(PCA), kNN classifier, and Mahalonobis distance,

are used in ASM to obtain better segmentation

results.

The remainder of this paper is organized as

follows. Section 2 describes the ACM and ASM

approaches. In Section 3, experimental results are

discussed. We state our conclusion in Section 4.

2. Image Segmentation Methods

2.1 ACM approach

2.1.1 Description of the model

ACMs segment objects using curve evolution

starting from an initial contour. The level set

method (the most suitable method for tracking

moving interfaces) is implicit, parameter-free, and

can easily handle topological changes. Thus we

represent an evolving curve by the zero-level set

of the signed distance function. We assume that

our image consists of two homogeneous regions

-object and background-separated by the contour.

Each of these regions has a different distribution

function. To segment the object and background,

we need to maximize the distance between these

two distributions. To measure the distance, we use

a similarity metric based on prediction theory [19]

and defined as follows:

This problem is equivalent to the partial differ-

ential equation (PDE) of the gradient descent

method, which describes the level set evolution of

an evolving curve.

Let l⊂ℝ, be grayscale image defined over the

domain Ω⊂ℝ2, (x, y)∈ℝ2, the image coordinates,

ω an open subset of Ω and C=∂ω its boundary.

In the level set method [26], the curve C is repre-

sented by the zero-level set of the signed distance

function φ: Ω→ℝ, such that

In Fig. 1, we illustrate the above notations for

level set function φ, used to represent the curve

C.

Let p-(z, φ) and p＋(z, φ) be the respective

probability density functions of the inside and out-

side regions of curve C. Using the Heaviside func-
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Fig. 1 Level set representation of curve C

tion (1) we can write the cumulative density func-

tion of the inside region of the curve C as (2). p-(z,

φ) is defined by (3), where A_(φ(x, y)) is the area

of the inside region of curve C and δ(φ), the Dirac

delta function, is the derivative of (1). In a similar

way, we obtain (3) and define the probability den-

sity function p＋(z, φ) by (4).

 (1)

(2)

(3)

(4)

The log-likelihood ratio (5) of the two

distributions is used to measure the dissimilarity

of the distributions. In ACM, we maximize the

fitting term (6) as the standard deviation of the

log-likelihood ratio function.

(5)

(6)

ε{f(z)} is the expected value of the function f(z),

where z is a random variable in the range [0,255].

In ACM, a regularizing term is added to the fit-

ting term (6), and hence the energy functional min-

imization problem is defined by (7). Here, λ≥0

is a weight parameter, and minimization of the

length of the curve, length(φ = 0), is performed un-

der the assumptions of regularization and a smooth

contour. Applying the gradient descent method to

this optimization problem, we obtain the PDE (8),

which describes the level set evolution of the curve

C that maximizes the distance between the dis-

tributions of the inside and outside regions of the

segmenting curve. We compute the gradient of the

fitting term (6) using equation (9).

(7)

 (8)

 (9)

where,

2.1.2 Numerical approximation of the model

For the numerical experiments on level set evo-

lution we used the regularizations of the Heaviside

function and Dirac delta function given by (10) and

(11), respectively. These regularizations are shown

in Fig. 2.

(10)

(11)

To discretize equation (8) with respect to φ, we

used a finite difference scheme; and the following

notation. Let Δt be the time step, and (xi, yj)=(i,
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(a) (b)

Fig. 2 The regularizations of the (a) Heaviside function and (b) Dirac delta function

j) be the image pixels, for i=1,…, M, j=1,…N. Let

=(nΔt, xi, yj) be an approximation of φ(t, x, y,

with n≥0, φ0=φ0, here φ0 is the initial contour. The

finite differences are

Then, we compute φn＋1 via the following dis-

cretization and linearization of (12) with respect to

φ.

(12)

The principal steps of the algorithm are as fol-

lows:

• Initialize φ0 by φ0, n=0.

• Repeat

◦ Compute p-(z, φ), A-(φ) and p＋(z, φ), A＋

(φ), using (3) and (4), respectively.

◦ Solve the PDE in φ via (12), to obtain φn＋1
.

◦ Reinitialize φ.

• Until the algorithm converges.

2.2 ASM approach

ASMs use prior knowledge obtained from a

number of sample images. In ASM, we use data

from each sample image to construct a model that

can be used to segment another image. There are

four main steps in the procedure: training, model-

ing, initialization and segmentation.

• In the training step, landmark points are placed

on the sample images to create the training set.

This process must be carried out manually for

each image to obtain the boundary of the object

to be segmented.

• The modeling step employs all of the data ac-

quired in the training step. The landmark points

from each image must be aligned before con-

structing the model. The model consists of a

shape model (created from the mean positions

of all landmark points in all sample images) and

a gray level appearance model (created using the

gray level intensity along the normal at each

landmark point).

• Initialization is an important step in ASM.

Incorrect placement of the model on the object

can result in poor segmentation. Therefore, the

model should be placed as close as possible to

the object.

• In the segmentation step, each landmark point

of the model evolves to fit the contour of the

object.
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Fig. 3 The order of placement of landmark points

on the corpus callosum.

Fig. 4 The shape alignment algorithm.

2.1.1 Training

The goal of this step is to create a training set

in which the shape of the corpus callosum is ex-

pressed by the coordinates of the landmark points.

It begins with manual placement of landmark

points on each sample image, and is therefore the

most time-consuming step in ASM. Naturally,

more landmark points will result in a more accurate

shape. In our example, we chose to put 25 landmark

points on the corpus callosum. The order of these

landmark points is shown in Fig. 3. This is accom-

plished by putting landmark points on the corners

of the corpus callosum and inserting some points

between the corners.

We would like to obtain an accurate representa-

tion of the shape of the corpus callosum, but 25

landmark points are not enough to accomplish this.

Therefore, we automatically insert more landmark

points between our original landmark points using

interpolation. The interpolation procedure can be

considered semi-automatic landmarking because

we must first manually provide the original 25

points. The goal of this interpolation process is not

only to obtain a more accurate representation of

the shape of the corpus callosum, but also to pro-

vide a simple way of examining the effect of the

number of landmark points in ASM.

The shape of the corpus callosum is represented

by a set of n points. These points are represented

by the vector xi in (13), where n is the number of

landmark points and i is the index of the sample

image.

(13)

2.2.2 Modeling

ASM examines the statistics of the coordinates

of the labeled points in the training set. The various

positions of the corpus callosum in the different

sample images will lead to different landmark point

coordinates. Thus it is necessary to align all shapes

acquired in the learning step before performing any

statistical computations. There are several shape-

alignment methods; one of which is generalized

procrustes analysis (GPA) which is used to align

a set of objects [27].

In GPA, transformations, such as translation,

scaling, and rotation, are applied to the original po-

sition of the shape. In our work, we move every

shape to the base of the coordinates before apply-

ing any transformation. This is done by updating

the value of each coordinate in a shape by adding

the mean value of all the corresponding coordinates

in that shape (translation offset).

Rotational variation can be removed by using

the direction of each point in a shape. We compute

the mean direction of the shape (rotation offset),

and use it to update the direction of each point. The

last step of this alignment is to create new points

with updated directions, which will be used for fur-

ther statistical computations. Fig. 4 shows an out-
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Fig. 5 The mean shape of the corpus callosum

Table 1. Mean shape variation in the corpus

callosum

i mean

1

2

3

4

5

line of the alignment process.

After aligning all shapes in the training set, we

compute the mean shape of the training set using

(14), where xi is the vector of all coordinates in a

shape, and m is the number of shapes used in the

training set.

(14)

Fig. 5 shows the mean shape of the corpus cal-

losum acquired from the training set. Thus the

mean shape will be the base of all shape varieties

that will be used in ASM. The variation in shape

results from the movement of the landmark points

based on eigenvalues and eigenvectors. The co-

variance of all of the training data is computed us-

ing (15). From this covariance, we can obtain ei-

genvalues λi and eigenvectors spi. To limit the

number of eigenvalues, we only use significant ei-

genvalues that are higher than 98% of all of the

eigenvalues.

(15)

The model can be approximated with (16) using

the mean shape, significant eigenvectors, and a

weight vector b. The value of b is determined by

(17). It is usually bounded by a multiple of the

square root of an eigenvalue λi as in (18). The var-

iation in the mean shape caused by some of the

eigenvalues is shown in Table 1. The first sig-

nificant eigenvalue adjusts the thickness and size

of the corpus callosum. The second eigenvalue

changes the position of the left part of the corpus

callosum. The third and fifth eigenvalues adjust the

respective curvatures of the lower and upper parts

of the corpus callosum, whereas the fourth ei-

genvalue adjusts the top left part.

(16)

(17)

(18)

The next step is to create a gray level

appearance. Its function is to obtain the mean gray

level profile along the normal at each landmark

point. We choose k points outside the landmark

point and k points inside the landmark point, so

that we have 2k+1 points in the gray level profile.

We create the mean gray level profile for all shapes

in the training set.

2.2.3 Initialization

This is the process that places the mean shape

on the object to be segmented. It is important to

place the mean shape as precisely as possible.

Misplacing the mean shape may result in incorrect

segmentation.
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(a) Original image I (b) Initial contour (c) 1100 iterations (d) 1400 iterations

(e) 2 interpolated points: Initial and final conditions (f) 20 interpolated points: Initial and final conditions

Fig. 6. First row: Initial contour and ACM segmentation results; Second row: initial position of mean

shapes and ASM segmentation results;

2.2.4 Segmentation

Segmentation is the last step in ASM. It utilizes

the shape model and gray profile obtained in the

modeling step and the position of the mean shape

from the initialization step. The main thing that

happens in segmentation is the evolution of the

mean shape, which is determined by the movement

of each landmark point. The distance of point

movement along the normal is defines the gray

level resolution [28]. This resolution can vary from

coarse (a long distance between each pair of profile

points) to fine (a short distance between each pair

of profile points). Thus, each point moves along its

normal by minimizing the Mahalanobis distance

between the mean gray profile, , and the gray

profile of the image, given by (19) [29].

(19)

The segmentation is expected to converge.

However, the number of iterations must still be ad-

equate to ensure that the stop condition of the pro-

cedure is satisfied.

3. EXPERIMENTAL RESULTS

The test image was acquired using a Siemens

3T MR imaging device from Pusan National

University Hospital, Pusan, South Korea. The sub-

jects were three normal males, 24-27 years of age.

The images were a T1-weighted grayscale DICOM

image with a resolution 256×256. There are various

parameters that can influence the segmentation

results. The initializations for both methods are

simple and can be done by any user. In ACM case,

user needs to draw any contour inside the object,

and in ASM case, user needs to put the mean shape

as close as possible to the target object. Fig. 6(a)

shows the original image I, Fig. 6(b) shows the ini-

tial contour and Fig. 6(b-d) shows the segmenta-

tion results of ACM. Fig. 6(e, f) shows the initiali-

zation and respective ASM results with 2 and 20

interpolated points.

The ground truth image is shown in Fig. 7(a),

which is considered the benchmark for the corpus

callosum area and the segmentation results of

ACM and ASM are shown in Fig. 7(b) and Fig.

7(c), respectively.

To evaluate the corpus callosum segmentation

accuracy as a segmentation error in percentage, we

used Jaccard distance, J δ(A, B), as follows:
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(a) Ground truth image (b) ACM segmentation result (c) ASM segmentation result

Fig. 7 (a) Ground truth image; The area of the corpus callosum using (b) ACM, (c) ASM;

Fig. 8. Graphs of the number of iterations vs. percentage error (black) and the number of iterations vs.

elapsed time (gray).

where A is the ground truth image, B is the seg-

mentation result and Jaccard similarity coefficient

(also known as Jaccard index) defined as

In ACM, the segmentation result depends on the

initial contour and the number of iterations. Fig.

8 shows that the elapsed time (gray) increased

with the number of iterations, while the percentage

error (black) first decreased and then became

stable. The segmentation time and accuracy for

numbers of iterations between 100 and 2000 are

listed in Table 2. The error was stable after 1200

iterations. This was our optimum result for ACM.

In ASM, we varied the number of landmark

points. Point-to-point interpolation was used to in-

clude more landmark points in the model. Among

the original 25 landmark points of the corpus cal-

losum model, there were 11 corner points which

were the starting and end points of the inter-

polation. There were actually only 10 such points

because the starting and end points were the same.

Therefore, each interpolation produced a total

number of landmark points determined by (20).

(20)

As mentioned before, the initialization step is

important in ASM. The more precise the placement

of the model on the image, the better the segmen-

tation will be. However, we used the same initial

position in all experimental tests, because we

wanted comparable results. Fig. 9 shows that the

percentage error (black line) clearly decreased

when the total number of landmark points was be-

tween 10 and 45. Beyond 45, the percentage error

remained at roughly the same level, around 19-21

%. On the other hand, the elapsed time (gray line)

increased with the number of landmark points. The
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Table 2. Elapsed Time and segmentation error

using ACM

Iteration numbers Time elapsed (s) Error (%)

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

5.32

10.71

16.33

22.05

28.12

34.36

40.74

47.47

54.29

61.14

68.02

74.88

81.81

88.79

95.77

102.70

109.61

116.58

123.47

130.30

61.38

52.37

47.24

37.15

29.89

18.85

16.39

13.81

9.65

9.12

9.06

8.99

8.99

8.99

8.99

8.99

8.99

8.99

8.99

8.99

Fig. 9. Graphs of landmark points vs. percentage error (black) and landmark points vs. elapsed time (gray).

Table 3. Influence of the number of points interpo-

lated between landmarks

Interpolated

points

Total number of

landmark points

Time

elapsed (s)

Error

(%)

2

3

5

10

15

20

25

30

35

40

45

50

12

23

45

100

155

210

265

320

375

430

485

540

6.48

6.87

7.53

9.84

12.07

14.59

16.71

18.54

19.96

22.47

25.24

27.09

41.46

26.27

21.08

19.79

19.72

19.47

19.83

21.24

20.57

20.00

20.20

21.39

details are listed in Table 3.

This fluctuation in percentage error was caused

by the model shape. When the number of interpo-

lated points was 2 or 3, the corpus callosum model

was not clear or smooth, and the segmentation re-

sult had a high percentage error. When the number

of landmark points was 45 (interpolated by 5

points), the shape of the corpus callosum model

was already formed. Fig. 10 shows the differences

between the shapes of the corpus callosum models

for 3, 5, 25, and 50 interpolations. There were no

major differences between the shapes produced by

5, 25, and 50 interpolations. A good corpus callosum

shape was obtained with only 5 interpolated points.

More interpolated points merely resulted in a

shorter distance between points, without any sig-

nificant shape change. Therefore, the segmentation

results were virtually the same for all cases from

5 to 50 interpolated points, with little variation.

This variation was caused by using the same initial

position for all models, because one model is un-

likely to have the same optimal initial position as
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(a) (b) (c) (d)

Fig. 10. Corpus callosum models for some interpolated points: (a) 3, (b) 5, (c) 25, and (d) 50 points.

(a) Original image II (b) ACM segmentation result (c) ASM segmentation result

(d) Original image III (e) ACM segmentation result (f) ASM segmentation result

Fig. 11. First column: Original images; Second and third column: The segmentation results of ACM and

ASM, respectively;

Table 4. Comparison of the ACM and ASM

Elapsed time (sec) Error (%)

ACM ASM ACM ASM

Original image I 74.88 14.59 8.99 19.47

Original image II 81.46 16.21 12.72 26.99

Original image III 59.70 10.47 8.61 19.07

another. In our experiments, 20 interpolated points

produced the optimum ASM corpus callosum

segmentation.

In Fig. 11, first row shows original image II, its

respective segmentation results of ACM and ASM,

and second row shows original image III, its seg-

mentation results of ACM and ASM, respectively.

Comparison of segmentation accuracy and elapsed

time of ACM and ASM is shown in Table 4.

4. CONCLUSION

In our experiments, it was clearly shown that

ASM is faster than ACM. To obtain the best re-

sults, ASM required around 10-16 seconds, while

ACM required around 60-81 seconds. This means

that ASM is more than 5 times faster than ACM.

On the other hand, the segmentation accuracy of

ACM was much better than that of ASM. The

ACM segmentation error was 8.61-12.72%, where-

as, the ASM error was 19.07-26.99%. These re-

sults indicate a tradeoff between the segmentation

accuracy of ACM and the segmentation time of

ASM. However, in medical image segmentation,

accuracy is more important than time and it must

be the main consideration in choosing a segmenta-
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tion method, because error could lead to an erro-

neous diagnosis of a patient’s medical status or

disease. Therefore, to segment the corpus callos-

um, ACM is preferable to ASM.

REFERENCES

[ 1 ] A. Elsayed, F. Coenen, M.G. Finana, and V.

Sluming, “MRI Brain ScCn Classification

According to the Nature of the Corpus Callo-

sum,” Syposium on Med. Image Underst. and

Appl., pp. 19-23, 2010.

[ 2 ] C.N. Vidal, R. Nicolson, T.J. DeVito, K.M.

Hayashi, J.A. Geaga, D.J. Drost, P.C.

Williamson, N. Rajakumar, Y. Sui, R. A.

Dutton, A.W. Toga and P.M. Thompson,

“Mapping Corpus Callosum Deficits in Autism:

An Index of Aberrant Cortical Connectivity,”

Biological Psychiatry, Vol. 60, No. 3, pp. 218-

225, 2006.

[ 3 ] J. Piven, J. Bailey, B.J. Ranson, and S. Arndt,

“An MRI Study of the Corpus Callosum in

Autism,” Am. J . of Psychiatry, Vol. 154, No.

8, pp. 1051-1056, 1997.

[ 4 ] S.L. Palmer, W.E. Reddick, J.O. Glass, A.

Gajjar, O. Goloubeva, and R.K. Mulhern,

“Decline in Corpus Callosum Volume Among

Pediatric Patients with Medulloblastoma:

Longitudinal MR Imaging Study,” Am. J . of

Neuroradiol., Vol. 23, No. 7, pp. 1088-1094,

2002.

[ 5 ] A. Kass and D. Terzopoulos, “Snakes: Active

Contour Models,” Int. J . of Comput. Vis., Vol.

1, No. 4, pp. 321-331, 1987.

[ 6 ] L. Cohen, “On Active Contour Models and

Balloons,” Comput. Vis., Graphics and Image

Process. Image Underst., Vol. 53, No. 2, pp.

211-218, 1991.

[ 7 ] V. Caselles, F. Catte, T. Coll, and F. Dibos,

“A Geometric Model for Active Contours in

Image Processing,” Numerische Mathematik,

Vol. 66, No. 1, pp. 1-31, 1993.

[ 8 ] V. Caselles, R. Kimmel, and G. Sapiro,

“Geodesic Active Contours,” Int. J . of Comput.

Vis., Vol. 22, No. 1, pp. 61-79, 1997.

[ 9 ] S.C. Zhu and A. Yuille, “Region Competition:

Unifying Snakes, Region Ggrowing, and

Bayes/MDL for Multiband Image

Segmentation,” IEEE Trans. on Pattern Anal.

and Machine Intell., Vol. 18, No. 9, pp.

884-900, 1996.

[10] D. Mumford and J. Shah, “Optimal Approxim-

ations by Piecewise Smooth Functions and

Associated Variational Problems,” Commun.

on Pure and Appl. Math., Vol. 42, No. 5, pp.

577-685, 1989.

[11] T. Chan and L. Vese, “Active Contours With-

out Edges,” IEEE Trans. on Image Process.,

Vol. 10, No. 2, pp. 266-277, 2001.

[12] J. Mille, “Narrow Band Region-based Active

Contours and Surfaces for 2D and 3D Seg-

mentation,” Comput. Vis. and Image

Underst., Vol. 113, No. 9, pp. 946-965, 2009.

[13] S. Dambreville, Y. Rathi, and A. Tannenbaum,

“Shape-based Approach to Robust Image

Segmentation using Kernel PCA,” IEEE Conf.

on Comput. Vis. and Pattern Recognit., Vol.

1, pp. 977-984, 2006.

[14] Y. Chen, F. Huang, and H. Tagare, “Using

Prior Shapes in Geometric Active Contours in

a Variational Framework,” Int. J . of Comput.

Vis., Vol. 50, No.3, pp. 315-328, 2007.

[15] M. Leventon, E. Grimson, and O. Faugeras,

“Statistical Shape Influence in Geodesic Active

Contours,” IEEE Conf. on Comput. Vis. and

Pattern Recognit., pp. 1316-1324, 2000.

[16] M. Rousson and R. Deriche, “A Variational

Framework for Active and Adaptive Segmen-

tation of Vector Valued Images,” IEEE

Workshop on Motion and Video Comput., pp.

56-62, 2002.

[17] A. Yezzi, A. Tsai, and A. Willsky, “A Statisti-

cal Approach to Snakes for Biomodal Trimodal

Imagery,” Int. Conf. on Comput. Vis., pp. 898-



1029Comparison of Active Contour and Active Shape Approaches for Corpus Callosum Segmentation

903, 1999.

[18] J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A.

Willsky, “A Nonparametric Statistical Method

for Image Segmentation using Information

Theory and Curve Evolution,” IEEE Trans.

on Image Process., Vol. 14, No. 10, pp. 1486-

1502, 2005.

[19] R. Sandhu, T. Georgiou, and A. Tannenbaum,

“A New Distribution Metric for Image Seg-

mentation,” SPIE Med. Imaging, Vol. 6914,

pp. 691404-1-9, 2008.

[20] T.F. Cootes, C.J. Taylor, D.H. Cooper, and J.

Graham, “Active Shape Models–Their

Training and Application,” Comput. Vis. and

Image Underst., Vol. 61, No. 1, pp. 38-59,

1995.

[21] C. Butakoff and A.F. Frangi, “Multi-view

Face Segmentation using Fusion of Statistical

Shape and Appearance Models,” Comput. Vis.

and Image Underst., Vol. 114, No. 3, pp. 311-

321, 2010.

[22] D.A. Lim and J.P. Ko, “ A System for Recog-

nizing Sunglasses and a Mask of an ATM

user,” Journal of Korea Multimedia Society,

Vol. 11, No. 1, pp. 34-43, 2008

[23] W.C. Song, S.K. Kang, and T.S. Jung, “An

Automatic Smile Analysis System for Smile

self-training,” Journal of Korea Multimedia

Society, Vol. 14, No. 11, pp. 1373-1382, 2011.

[24] T.F. Cootes, A.J. Hill, C.J. Taylor, and J.

Haslam, “The use of Active Shape Models for

Locating Structures in Medical Images,”

Image and Vision Comput., Vol. 12, No. 6, pp.

355-366, 1994.

[25] T.F. Cootes and C.J. Taylor, “Active Shape

Models-Smart Snakes,” Proc. of the Br.

Machine Vis. Conf., pp. 266-275, 1992.

[26] S. Osher and J.A. Sethian, “Fronts Propagat-

ing with Curvature-dependent Speed: Algor-

ithms Based on Hamilton-Jacobi Formulation,”

J . of Comput. Phys., Vol. 79, No. 1, pp. 12-49,

1988.

[27] T.F. Cootes and C.J. Taylor, Statistical Mod-

els of Appearance for Computer Vision, Tech.

Rep., University of Manchester, UK, 2004.

[28] B. van Ginneken, A.F. Frangi, J.J. Staal, B.M.

ter Haar Romeny, and M.A. Viergever,

“Active Shape Model Segmentation with Opti-

mal Features,” IEEE Trans. on Med. Imaging,

Vol. 21, No. 8, pp. 924-933, 2002.

[29] M. Benjelloun, S. Mahmoudi, and F. Lecron,

“A Framework of Vertebra Segmentation us-

ing the Active Shape Model-based Approach,”

Int. J . of Biomed. Imaging, Vol. 2011, pp. 1-

14, 2011.



1030 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 16, NO. 9, SEPTEMBER 2013

Enkhbolor Adiya

received the B.S., M.S. degrees

in Applied Mathematics from

School of Mathematics and

Computer Science of National

University of Mongolia in 2004,

2006 respectively. She is cur-

rently a PhD student in Medical

Image Technology Laboratory (MITL), School of

Computer Engineering, Inje University, South Korea.

Her research interests include image enhancement and

image segmentation.

Yonny Septian Izmantoko

received the B.S. degree in

Electrical Engineering from

Institut Teknologi Bandung, In-

donesia, in 2011. Currently, he is

a master student in Computer

Engineering department of Inje

University, Gimhae, South

Korea, joining Medical Image Technology Laboratory

(MITL). His research interests are image segmenta-

tion, image visualization, and parallel data computing

using GPU.

Heung Kook Choi

has gone the undergraduate

studying and graduate studying

in computer science and en-

gineering at the Department of

Electrical Engineering of Link-

öping University, Sweden (1984-

1990) and Ph.D. studying in

computerized image analysis at the Center for Image

Analysis of Uppsala University, Sweden (1990-1996).

He was President of Industry and Academic Coopera-

tion Foundation at Inje University and now he is

President of Korea Multimedia Society. His interesting

research fields are in computer graphics, virtual reality,

and medical image processing and analysis.


