DOI QR코드

DOI QR Code

CONTRACTION OF HOROSPHERE-CONVEX HYPERSURFACES BY POWERS OF THE MEAN CURVATURE IN THE HYPERBOLIC SPACE

  • Guo, Shunzi (School of Mathematics and Computer Science Hubei University, School of Mathematics and Statistics Minnan Normal University) ;
  • Li, Guanghan (School of Mathematics and Computer Science Hubei University) ;
  • Wu, Chuanxi (School of Mathematics and Computer Science Hubei University)
  • Received : 2012.12.28
  • Published : 2013.11.01

Abstract

This paper concerns the evolution of a closed hypersurface of the hyperbolic space, convex by horospheres, in direction of its inner unit normal vector, where the speed equals a positive power ${\beta}$ of the positive mean curvature. It is shown that the flow exists on a finite maximal interval, convexity by horospheres is preserved and the hypersurfaces shrink down to a single point as the final time is approached.

Keywords

References

  1. B. H. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151-171. https://doi.org/10.1007/BF01191340
  2. B. H. Andrews, Contraction of convex hypersurfacs in Riemannian spaces, J. Differential Geom. 39 (1994), no. 2, 407-431. https://doi.org/10.4310/jdg/1214454878
  3. B. H. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), no. 1, 151-161. https://doi.org/10.1007/s002220050344
  4. B. H. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000), no. 1, 1-36. https://doi.org/10.2140/pjm.2000.195.1
  5. B. H. Andrews, Moving surfaces by non-concave curvature functions, preprint (2004), available at arXiv:math.DG/0402273.
  6. A. Borisenko and V. Miquel, Total curvatures of convex hypersurfaces in hyperbolic space, Illinois J. Math. 43 (1999), no. 1, 61-78.
  7. E. Cabezas-Rivas and V. Miquel, Volume preserving mean curvature flow in the hyperbolic space, Indiana Univ. Math. J. 56 (2007), no. 5, 2061-2086. https://doi.org/10.1512/iumj.2007.56.3060
  8. B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 22 (1985), no. 1, 117-138.
  9. B. Chow, Deforming convex hypersurfaces by the square root of the scalar curvature, Invent. Math. 87 (1987), no. 1, 63-82. https://doi.org/10.1007/BF01389153
  10. R. J. Currier, On hypersurfaces of hyperbolic space infinitesimally supported by horospheres, Trans. Amer. Math. Soc. 313 (1989), no. 1, 419-431. https://doi.org/10.1090/S0002-9947-1989-0935532-0
  11. R. E. Greene and H. Wu, Function Theory on Manifolds which possess a Pole, Springer Verlag, LNM 699, Berlin-Heidelberg-New York, 1979.
  12. R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.
  13. M. Heidusch, Zur Regularitat des Inversen Mittleren Krummungsfusses, PhD thesis, Eberhard-Karls-Universitat Tubingen, 2001.
  14. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266. https://doi.org/10.4310/jdg/1214438998
  15. G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math. 84 (1986), no. 3, 463-480. https://doi.org/10.1007/BF01388742
  16. G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999), no. 1, 45-70. https://doi.org/10.1007/BF02392946
  17. G. Huisken and A. Polden, Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems (Cetraro, 1996), 45-84, Lecture Notes in Math., 1713, Springer, Berlin, 1999.
  18. N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of the Second Order, D. Reidel, 1978.
  19. G. Li, L. Yu, and C. Wu, Curvature flow with a general forcing term in Euclidean spaces, J. Math. Anal. Appl. 353 (2009), no. 2, 508-520. https://doi.org/10.1016/j.jmaa.2008.12.030
  20. G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
  21. J. A. McCoy, Mixed volume preserving curvature flows, Calc. Var. Partial Differential Equations. 24 (2005), no. 2, 131-154. https://doi.org/10.1007/s00526-004-0316-3
  22. P. Petersen, Riemannian Geometry. Springer Verlag, New York, 1998.
  23. O. C. Schnurer, Surfaces contracting with speed $|A|^2$, J. Differential Geom. 71 (2005), no. 3, 347-363. https://doi.org/10.4310/jdg/1143571987
  24. F. Schulze, Evolution of convex hypersurfaces by powers of the mean curvature, Math. Z. 251 (2005), no. 4, 721-733. https://doi.org/10.1007/s00209-004-0721-5
  25. J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. (2) 88 (1968), 62-105. https://doi.org/10.2307/1970556
  26. K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985), no. 6, 867-882. https://doi.org/10.1002/cpa.3160380615

Cited by

  1. DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES vol.53, pp.4, 2016, https://doi.org/10.4134/JKMS.j140445
  2. Contracting Convex Hypersurfaces in Space Form by Non-homogeneous Curvature Function pp.1559-002X, 2019, https://doi.org/10.1007/s12220-019-00148-9