DOI QR코드

DOI QR Code

Plastoglobule in chloroplast and its role in prenylquinone metabolism

엽록체 지질 소기관의 기능과 지질대사에서의 역할

  • Kim, Hyun Uk (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Eun-Ha (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Kyeong-Ryeol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jung, Su-Jin (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Roh, Kyung Hee (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jong-Bum (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
  • 김현욱 (농촌진흥청, 국립농업과학원, 농업생명자원부) ;
  • 김은하 (농촌진흥청, 국립농업과학원, 농업생명자원부) ;
  • 이경렬 (농촌진흥청, 국립농업과학원, 농업생명자원부) ;
  • 정수진 (농촌진흥청, 국립농업과학원, 농업생명자원부) ;
  • 노경희 (농촌진흥청, 국립농업과학원, 농업생명자원부) ;
  • 김종범 (농촌진흥청, 국립농업과학원, 농업생명자원부)
  • Received : 2013.09.08
  • Accepted : 2013.09.22
  • Published : 2013.09.30

Abstract

Lipid droplets called plastoglobules are present in all plastid types. In chloroplasts, they are surrounded by the outer lipid monolayer from and connected to thylakoid membrane. The plastoglobule core contains the neutral lipids, which includes prenylquinones, triacylglycerols, and carotenoids. During stress and various developmental stages such as senescence, the size and number of plastoglobules increase due to the accumulation of lipids. Plastoglobules proteome revealed the presence of metabolic enzymes as well as structural proteins, plastoglobulins/fibrillins. Among the metabolic enzymes, the tocopherol cyclase, VTE1 and the NADPH quinine dehydrogenase, NDC1 have demonstrated that these participate in isoprenoid lipid metabolic pathways at the plastoglobule, notably in the metabolism of prenylquinones (tocopherol, plastoquinol and phylloquinone).

최근 연구에서 엽록체의 미지의 소기관으로 알려졌던 플라스토글로뷸이 지질 대사에서 중요한 역할을 함이 제시되고 있다. 애기장대 플라스토글로뷸의 프로테옴 단백질 분석은 플라스토글로뷸이 단순히 지질 저장 기관으로써의 기능 뿐아니라 지질 합성 대사에 능동적으로 관여하는 소기관임을 제시하고 있다. 애기장대 플라스토글로뷸에서 34개의 단백질이 발견되었다. 이들을 세 그룹으로 나누어 보면 구조단백질인 플라스토글로불린과 엽록체 대사에 관여하는 효소, 그리고 기능이 미확인된 단백질로 구분 된다. 이들 단백질 유전자의 돌연변이체와 리피도믹스 분석으로 이들 단백질의 기능 규명 연구가 필요하다. 토코페롤 합성의 마지막 단계에 관여하는 VTE1과 VTE4는 엽록체에서 각기 다른 위치에 존재하여 VTE1은 플라스토글로뷸에 존재하나 VTE4는 엽록체 내막에 존재한다. 이 같은 사실은 프레닐퀴논 대사물질이 엽록체 내에서 이동할 가능성을 시사한다. 플라스토글로뷸이 엽록체의 기능을 유지하는데 있어 필수적인지에 대한 유전학 연구가 앞으로 진행되어야 한다. 다양한 스트레스와 발달단계에 따른 플라스토글로뷸의 프로테옴 분석은 지질대사에서 중요한 기능을 하는 신규 단백질을 발견하는데 도움을 줄 것이다. 지금까지 결과로는 플라스토글로뷸은 프레릴퀴논 대사에 있어서 교차로 역할을 함을 제안하고 있다.

Keywords

References

  1. Austin JR 2nd, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693-1703 https://doi.org/10.1105/tpc.105.039859
  2. Ausubel FM, Wildermuth MC, Dewdney J, Wu G (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414:562-565 https://doi.org/10.1038/35107108
  3. Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A, Reumann S (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441-1453 https://doi.org/10.1093/jxb/erq014
  4. Brehelin C, Kessler F (2008) The plastoglobule: a bag full of lipid biochemistry tricks. Photochem Photobio 84:1388-1394 https://doi.org/10.1111/j.1751-1097.2008.00459.x
  5. Brehelin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260-266 https://doi.org/10.1016/j.tplants.2007.04.003
  6. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343-2356 https://doi.org/10.1105/tpc.013656
  7. Cunningham FX Jr, Tice AB, Pham C, Gantt E (2010) Inactivation of genes encoding plastoglobuli-like proteins in Synechocystis sp. PCC 6803 leads to a light-sensitive phenotype. J Bacteriol 192:1700-1709
  8. DellaPenna D, Kobayashi N (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J 55:607-618 https://doi.org/10.1111/j.1365-313X.2008.03539.x
  9. DeLong JM, Steffen KL (1997) Photosynthetic function, lipid peroxidation, and alpha-tocopherol content in spinach leaves during exposure to UV-B radiation. Can J Plant Sci 77:453-459 https://doi.org/10.4141/P96-162
  10. Deruere J, Romer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119-133 https://doi.org/10.1105/tpc.6.1.119
  11. Dormann P (2007) Functional diversity of tocochromanols in plants. Planta 225:269-276
  12. Eugeni Piller L, Besagni C, Ksas B, Rumeau D, Brehelin C, Glauser G, Kessler F, Havaux M (2011) Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. Proc Natl Acad Sci USA 108:14354-14359 https://doi.org/10.1073/pnas.1104790108
  13. Falk J, Munne-Bosch S (2010) Tocochromanol functions in plants: antioxidation and beyond. J Exp Bot 61:1549-1566 https://doi.org/10.1093/jxb/erq030
  14. Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P, Metraux JP (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147:1279-1287 https://doi.org/10.1104/pp.108.119420
  15. Gaude N, Brehelin C, Tischendorf G, Kessler F, Dormann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729-739 https://doi.org/10.1111/j.1365-313X.2006.02992.x
  16. Giacomelli L, Rudella A, van Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol 141:685-701 https://doi.org/10.1104/pp.106.080150
  17. Gillet B, Beyly A, Peltier G, Rey P. (1998) Molecular characterization of CDSP 34, a chloroplastic protein induced by water deficit in Solanum tuberosum L. plants, and regulation of CDSP 34 expression by ABA and high illumination. Plant J 16:257-262 https://doi.org/10.1046/j.1365-313x.1998.00292.x
  18. Gross J, Cho WK, Lezhneva L, Falk J, Krupinska K, Shinozaki K, Seki M, Herrmann RG, Meurer J (2006) A plant locus essential for phylloquinone (vitamin K1) biosynthesis originated from a fusion of four eubacterial genes. J Biol Chem 281:17189-17196 https://doi.org/10.1074/jbc.M601754200
  19. Gruszka J, Pawlak A, Kruk J (2008) Tocochromanols, plastoquinol, and other biological prenyllipids as singlet oxygen quenchers -determination of singlet oxygen quenching rate constants and oxidation products. Free Radic Biol Med 45:920-928 https://doi.org/10.1016/j.freeradbiomed.2008.06.025
  20. Grutter C, Alonso E, Chougnet A, Woggon WD (2006) A biomimetic chromanol cyclization leading to alpha-tocopherol. Angew Chem Intl Ed Engl 45:1126-1130 https://doi.org/10.1002/anie.200503123
  21. Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451-3469 https://doi.org/10.1105/tpc.105.037036
  22. Horvath G, Wessjohann L, Bigirimana J, Jansen M, Guisez Y, Caubergs R, Horemans N (2006) Differential distribution of tocopherols and tocotrienols in photosynthetic and nonphotosynthetic tissues. Phytochemistry 67:1185-1195 https://doi.org/10.1016/j.phytochem.2006.04.004
  23. Hundal T, Forsmark-Andree P, Ernster L, Andersson B (1995) Antioxidant activity of reduced plastoquinone in chloroplast thylakoid membranes. Arch Biochem Biophys 324:117-122 https://doi.org/10.1006/abbi.1995.9920
  24. Jones AM, Bennett MH, Mansfield JW, Grant M (2006) Analysis of the defence phosphoproteome of Arabidopsis thaliana using differential mass tagging. Proteomics 6:4155-4165 https://doi.org/10.1002/pmic.200500172
  25. Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2:1154-1180 https://doi.org/10.1093/mp/ssp088
  26. Kanwischer M, Porfirova S, Bergmuller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713-723 https://doi.org/10.1104/pp.104.054908
  27. Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129:1616-1626 https://doi.org/10.1104/pp.003087
  28. Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087-4100 https://doi.org/10.1093/jxb/err142
  29. Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107-113 https://doi.org/10.1007/s004250050540
  30. Kim HU, van Oostende C, Basset GJC, Browse J (2008) The AAE14 gene encodes the Arabidopsis o-succinylbenzoyl-CoA ligase that is essential for phylloquinone synthesis and photosystem-I function. Plant J 54:272-283 https://doi.org/10.1111/j.1365-313X.2008.03416.x
  31. Kruk J, Nowicka B (2010) Occurrence, biosynthesis and function of isoprenoid quinones. Biochim Biophys Acta 1797:1587-1605 https://doi.org/10.1016/j.bbabio.2010.06.007
  32. Kruk J, Trebst A (2008) Plastoquinol as a singlet oxygen scavenger in photosystem II.. Biochim Biophys Acta 1777:154-162 https://doi.org/10.1016/j.bbabio.2007.10.008
  33. Kumar R, Raclaru M, Schusseler T, et al (2005) Characterisation of plant tocopherol cyclases and their overexpression in transgenic Brassica napus seeds. FEBS Lett 579:1357-1364 https://doi.org/10.1016/j.febslet.2005.01.030
  34. Lee DG, Ahsan N, Lee SH, Kang KY, Lee JJ, Lee BH (2007) An approach to identify cold-induced low-abundant proteins in rice leaf. C Rendus Biol 330:215-225 https://doi.org/10.1016/j.crvi.2007.01.001
  35. Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour 27:144-149
  36. Lichtenthaler HK (1969) Plastoglobuli of spinach-their size and composition during chloroplast degeneration. Protoplasma 68:315-326 https://doi.org/10.1007/BF01251616
  37. Lichtenthaler HK (2007) Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance. Photosynth Res 92:163-179 https://doi.org/10.1007/s11120-007-9204-y
  38. Lichtenthaler HK, Peveling E (1966) Osmiophilic lipid inclusions in the chloroplasts and in the cytoplasm of Hoya carnosa R. Br. Naturwissenschaften 53:534
  39. Locy RD, Chang CC, Nielsen BL, Singh NK (1996) Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiol 110:321-328 https://doi.org/10.1104/pp.110.1.321
  40. Lohmann A, Schottler MA, Brehelin C, Kessler F, Bock R, Cahoon EB, Dormann P (2006) Deficiency in phylloquinone (vitamin K1) methylation affects prenyl quinone distribution, photosystem I abundance, and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281:40461-40472 https://doi.org/10.1074/jbc.M609412200
  41. Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2005) Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol 138:1422-1435 https://doi.org/10.1104/pp.105.061135
  42. Mene-Saffrane L, DellaPenna D (2010) Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol Biochem 48:301-309 https://doi.org/10.1016/j.plaphy.2009.11.004
  43. Metraux JP, Garcion C, Lohmann A, Lamodiere E, Catinot J, Buchala A, Doermann P (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147:1279-1287 https://doi.org/10.1104/pp.108.119420
  44. Muh F, Glockner C, Hellmich J, Zouni A (2011) Light-induced quinone reduction in photosystem II. Biochim Biophys Acta 1817:44-65
  45. Munne-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743-748 https://doi.org/10.1016/j.jplph.2005.04.022
  46. Nordby HE, Yelenosky G (1985) Change in citrus leaf lipids during freeze-thaw stress. Phytochemistry 24:1675-1679 https://doi.org/10.1016/S0031-9422(00)82533-9
  47. Oksanen E, Sober J, Karnosky DF (2001) Impacts of elevated CO2 and/or O-3 on leaf ultrastructure of aspen (Populus tremuloides) and birch (Betula papyrifera) in the Aspen FACE experiment. Environ Pollut 115:437-446 https://doi.org/10.1016/S0269-7491(01)00233-0
  48. Olejnik D, Gogolewski M, NogalaKalucka M (1997) Isolation and some properties of plastochromanol-8. Nahrung-Food 41:101-104 https://doi.org/10.1002/food.19970410209
  49. Peng L, Yamamoto H, Shikanai T (2010) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta 1807:945-953
  50. Porfirova S, Bergmuller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495-12500 https://doi.org/10.1073/pnas.182330899
  51. Pospisil P (2011) Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim Biophys Acta 1817:218-231
  52. Pozueta-Romero J, Rafia F, Houlne G, Cheniclet C, Carde JP, Schantz ML, Schantz R (1997) A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol 115:1185-1194 https://doi.org/10.1104/pp.115.3.1185
  53. Reumann S (2004) Specification of the peroxisome targeting signals type 1 and type 2 of plant peroxisomes by bioinformatics analyses. Plant Physiol 135:783-800 https://doi.org/10.1104/pp.103.035584
  54. Reumann S, Babujee L, Wurtz V, Ma C, Lueder F, Soni P, van Dorsselaer A (2010) The proteome map of spinach leaf peroxisomes indicates partial compartmentalization of phylloquinone (vitamin K1) biosynthesis in plant peroxisomes. J Exp Bot 61:1441-1453 https://doi.org/10.1093/jxb/erq014
  55. Rey P, Gillet B, Romer S, Eymery F, Massimino J, Peltier G, Kuntz M. (2000) Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. Plant J 21:483-494 https://doi.org/10.1046/j.1365-313x.2000.00699.x
  56. Schultz G, Ellerbrock BH, Soll J (1981) Site of prenylation reaction in synthesis of phylloquinone (vitamin K1) by spinach chloroplasts. Eur J Biochem 117:329-332 https://doi.org/10.1111/j.1432-1033.1981.tb06341.x
  57. Shikanai T (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199-217 https://doi.org/10.1146/annurev.arplant.58.091406.110525
  58. Shimada H, Ohno R, Shibata M, Ikegami I, Onai K, Ohto MA, Takamiya K (2005) Inactivation and deficiency of core proteins of photosystems I and II caused by genetical phylloquinone and plastoquinone deficiency but retained lamellar structure in a T-DNA mutant of Arabidopsis. Plant J 41:627-637 https://doi.org/10.1111/j.1365-313X.2004.02326.x
  59. Singh DK, Maximova SN, Jensen PJ, Lehman BL, Ngugi HK, McNellis TW (2010) FIBRILLIN4 is required for plastoglobule development and stress resistance in apple and Arabidopsis. Plant Physiol 154:1281-1293 https://doi.org/10.1104/pp.110.164095
  60. Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290-299 https://doi.org/10.1016/0003-9861(85)90167-5
  61. Strzalka K, Kruk J (1999) Dark reoxidation of the plastoquinonepool is mediated by the low-potential form of cytochrome b-559 in spinach thylakoids. Photosynth Res 62:273-279 https://doi.org/10.1023/A:1006374319191
  62. Szymanska R, Kruk J (2010) Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase. Plant Cell Physiol 5:537-545
  63. Tevini M, Steinmuller D (1985) Composition and function of plastoglobuli. 2. Lipid-composition of leaves and plastoglobuli during beech leaf senescence. Planta 163:91-96 https://doi.org/10.1007/BF00395902
  64. Thomson WW, Platt K (1973) Plastid ultrastructure in barrel cactus, Echinocactus-Acanthodes. New Phytol 72:791-797 https://doi.org/10.1111/j.1469-8137.1973.tb02054.x
  65. Valentin HE, Qi Q (2005) Biotechnological production and application of vitamin E: current state and prospects. Appl Microbiol Biotechnol 68:436-444 https://doi.org/10.1007/s00253-005-0017-7
  66. Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dormann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225-11234 https://doi.org/10.1074/jbc.M511939200
  67. Vidi PA, Kessler F, Brehelin C (2007) Plastoglobules: a new address for targeting recombinant proteins in the chloroplast. BMC Biotechnol 7:4 https://doi.org/10.1186/1472-6750-7-4
  68. Yang Y, Sulpice R, Himmelbach A, Meinhard M, Christmann A, Grill E (2006) Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acidmediated photoprotection. Proc Natl Acad Sci USA 103:6061-6066 https://doi.org/10.1073/pnas.0501720103
  69. Youssef A, Laizet Y, Block MA, Marechal E, Alcaraz JP, Larson TR, Pontier D, Gaffe J, Kuntz M (2010) Plant lipid associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J 61:436-445 https://doi.org/10.1111/j.1365-313X.2009.04067.x
  70. Ytterberg AJ, Peltier JB, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984-997 https://doi.org/10.1104/pp.105.076083
  71. Zbierzak AM, Kanwischer M, Wille C, et al (2010) Intersection of the tocopherol and plastoquinol metabolic pathways at the plastoglobule. Biochem J 425:389-399 https://doi.org/10.1042/BJ20090704