DOI QR코드

DOI QR Code

Acoustic Emission of Heat Treated Compacted Graphite Iron under 873~1173 K

873~1173 K에서 열처리된 강화흑연강(Compacted Graphite Iron, CGI)의 음향방출 특성

  • 남기우 (부경대학교 재료공학과) ;
  • 안병건 (한국폴리텍대학 부산캠퍼스) ;
  • 이수철 (부경대학교 대학원 학연협동기계공학)
  • Received : 2013.08.14
  • Accepted : 2013.10.23
  • Published : 2013.10.30

Abstract

CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873~1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

CGI는 주철보다 큰 강도 또는 작은 무게가 요구되는 응용에서 인기를 얻고 있다. 최근, 강화흑연강은 디젤 엔진 블록, 터보 하우징 및 배기 매니폴드에 사용된다. 이 논문은 873~1173 K에서 1~24 시간 동안 열화된 CGI340의 기계적 성질의 변화에 따른 음향방출 특성을 평가하였다. 연필심 파괴시험 결과에서, 탁월주파수 및 모재의 속도는 각각 97 kHz와 5,490 m/s이었다. 인장시험에서 모재는 상대적으로 높은 탁월주파수를 얻었다. 그러나 열처리된 재료, 열처리 시간이 길고, 열처리 온도가 높을수록, 낮은 주파수의 영역에서 얻어졌다. 이러한 현상은 장기간의 사용에 의해 나타난다.

Keywords

References

  1. R. J. Warrick, G. G. Ellis, C. C. Grupke, A. R. Khamseh, T. H. McLachlan and C. Gerkits, "Development and application of enhanced compacted graphite iron for the bedplate of the new chrysler 4.7 liter V-8 engine," SAE Paper, pp. 99-144 (1999)
  2. AFS Iron Castings Engineering Handbook, AFS, Chapter 6D, pp. 171-193 (2003)
  3. S. Dawson and T. Schroeder, "Practical applications for compacted graphite iron," American Foundry Society, Vol. 4, pp. 1-9 (2004)
  4. I. C. H. Hughes and J. Powell, "Compacted graphite irons: high quality engineering materials in the cast iron family," SAE Paper 840772 (1984)
  5. J. D. Altstetter and R. M. Nowicki, "Compacted graphite iron - its properties and automotive applications," AFS Transactions, Vol. 82, pp. 959-970 (1982)
  6. C. R. Loper, M. J. Lalich, H. K. Park and A. M. Gyarmaty, "The relationship of micro-structure to mechanical properties in compacted graphite irons," AFS Transactions, Vol. 80, pp. 313-330 (1980)
  7. K. Rohig, "Gusseisen mit vermicular graphit- herstellung, eigenschaften, anwendug," Konstruieren + Giessen, Vol. 16, pp. 7-27 (1991)
  8. D. M. Stefanescu, R. Hummer and E. Nechtelberger, "Compacted graphite irons," Metals Handbook, Ninth Edition, Vol. 15, pp. 667-677 (1988)
  9. S. Shao, Dr. Steve Dawson and M. Lampic, "The mechanical and physical properties of compacted graphite iron," Materials Science and Engineering Technology, Vol. 29, pp. 397-411 (1998)
  10. B. I. Imasogie and U. Wendt, "Characterization of graphite particle shape in spheroidal graphite iron using a computer-based image analyzer," Journal of Minerals & Materials Characterization & Engineering, Vol. 3, pp 1-12 (2004) https://doi.org/10.4236/jmmce.2004.31001
  11. M. Bazdar, H. R. Abbasi, A. H. Yaghtin and J. Rassizadehghani, "Effect of sulfur on graphite aspect ratio and tensile properties in compacted graphite irons," Journal of Materials Processing Technology, Vol. 209, pp. 1701-1705 (2009) https://doi.org/10.1016/j.jmatprotec.2008.04.015
  12. Y. H. Shy, C. H. Hsu, S. C. Lee and C. Y. Hou, "Effects of titanium addition and section size on microstructure and mechanical properties of compacted graphite cast iron," Materials Science and Engineering A, Vol. 278, pp. 54-60 (2000) https://doi.org/10.1016/S0921-5093(99)00599-7
  13. G. F. Geier, W. Bauer, B. J. McKay and P. Schumacher, "Microstructure transition from lamellar to compacted graphite using different modification agents," Materials Science and Engineering A, Vol. 413-414, pp. 339-345 (2005) https://doi.org/10.1016/j.msea.2005.08.159
  14. S. C. Lee and K. W. Nam, "Ultrasonic characteristics of degraded compacted graphite iron from 873 to 1,273 K," Journal of the Korean Society for Power System Engineering, Vol. 17, pp. 72-78 (2013)
  15. W. H. Prosser, "Advanced AE Techniques in Composite Materials Research," Journal of Acoustic Emission, Vol. 14(3-4), pp. S1-S11 (1996)
  16. K. W. Nam and S. C. Lee, "The Study of Mechanical Properties of Degraded Compacted Graphite Iron(CGI) Under 873-1273 K," Journal of the Korean Society for Nondestructive Testing, Vol. 33, pp. 173-180 (2013) https://doi.org/10.7779/JKSNT.2013.33.2.173