DOI QR코드

DOI QR Code

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method

음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출

  • 한병희 (한국표준과학연구원 안전측정센터) ;
  • 윤동진 (한국표준과학연구원 안전측정센터) ;
  • 허용학 (한국표준과학연구원 에너지소재표준센터) ;
  • 이영신 (충남대학교 기계설계공학과)
  • Received : 2013.09.12
  • Accepted : 2013.10.24
  • Published : 2013.10.30

Abstract

Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

음향방출기법은 구조물에 존재하는 손상 및 손상 메커니즘을 규명하는 가장 유효한 비파괴검사 수단으로 널리 이용되고 있다. 최근 이러한 재료 및 구조의 내부 손상의 실시간 모니터링이 가능한 기법을 활용하여 풍력 블레이드와 같은 대형 구조물의 건전성을 실시간으로 감시 가능하도록 하는 연구가 각광 받고 있다. 이 논문에서는 선행 연구를 통하여 개발된 신호 맵핑 기법을 사용하여 750 kW 블레이드에 외부 손상을 가정한 임의의 외부 충격을 가하여 위치 탐지 결과의 정확성을 확인하고, 100 kW 블레이드의 정하중 시험 시 발생하는 음향방출신호를 측정하여 손상이 발생된 것으로 의심되는 지역을 탐지하는 실험을 실시하였다. 실험 결과 발생된 모든 외부 충격신호에 대하여 낮은 오차범위를 가지는 결과를 보였으며, 정적하중실험동안 측정된 음향방출신호와 실제 손상 발생 위치의 비교를 통하여 새로운 신호 맵핑 기법으로 블레이드에서 발생되는 내부 손상을 매우 높은 정확도로 위치 표정이 가능함을 확인하였다.

Keywords

References

  1. K. K. Borum, M. McGugan and P. Brondsted, "Condition monitoring of wind turbine blades," Proceeding of the 27th Riso International Simposium on Materials Science, pp. 139-145 (2006)
  2. C. C. Ciang, J.-R. Lee and H.-J. Bang, "Structural health monitoring for a wind turbine system: a review of damage detection methods," Measurement Science and Technology, Vol. 19, 122001 (2008) https://doi.org/10.1088/0957-0233/19/12/122001
  3. B. F. Sorensen, E. Jorgensen, C. P. Debel, F. M. Jensen, H. M. Jensen, T. K. Jacobsen and K. M. Halling, "Improved design of large wind turbine blade of fibre composites based on studies of scale effects (Phase 1) Summary Report (Riso-R Report)," Riso National Laboratory, Denmark (2004)
  4. M. J. Sundaresan, M. J. Schulz and A. Ghoshal, "Structural health monitoring static test of a wind turbine blade," Subcontract Report NREL/SR-500-28719, National Renewable Energy Laboratory, CO, USA (2002)
  5. K.-J. Lee, O.-Y. Kwon, Y.-C. Joo, "An Improved AE Source Location by Wavelet Transform De-noising Technique", Journal of the Korean Society for Nondestructive Testing, Vol. 20, No. 6, pp. 490-500 (2000)
  6. K.-J. Lee, O.-Y. Kwon, "AE Source Location in Anisotropic Plates by Using Nonlinear Analysis," Journal of the Korean Society for Nondestructive Testing, Vol. 21, No. 3, pp. 281-287 (2001)
  7. G. R. Kirikera, V. Shinde, M. J. Schulz, A. Ghoshal, M. J. Sundaresan, R. J. Allemang and J. W. Lee, "A structural neural system for real-time health monitoring of composite materials," Structural Health Monitoring, Vol. 7, No. 1, pp. 65-83 (2008) https://doi.org/10.1177/1475921707081971
  8. G. R. Kirikeraa, V. Shindea, M. J. Schulza, A. Ghoshalb, M. Sundaresanc and R. Allemangd, "Damage localization in composite and metallic structures using a structural neural system and simulated acoustic emissions," Mechanical Systems and Signal Processing, Vol. 21, Issue 1, pp. 280-297 (2007) https://doi.org/10.1016/j.ymssp.2006.01.010
  9. F. Schubert, "Basic principles of acoustic emission tomography," EWGAE (2004)
  10. J.-O. Lee, S.-H. Won, W.-H. Yoon, J.-K. Lee and C.-H. So, "AE Source Location of Unidirectional GFRP," Journal of the Korean Society for Nondestructive Testing, Vol. 21, No. 3, pp. 277-280 (2001)
  11. J.-K. Kim, O.-Y. Kwon and Y.-K. Kang, "A Practical Method of Acoustic Emission Source Location in Anisotropic Composite Laminates," Journal of the Korean Society for Nondestructive Testing, Vol. 23, No. 3, pp. 237-245 (2003)
  12. J.-K. Kim, O.-Y. Kwon and Y. G. Won, "Acoustic Emission Source Location in Filament Wound CFRP Pressure Vessel," Journal of the Korean Society for Nondestructive Testing, Vol. 23, No. 5, pp. 439-444 (2003)
  13. B.-H. Han and D.-J. Yoon, "Damage Detection Method of Wind Turbine Blade Using Acoustic Emission Signal Mapping," Journal of the Korean Society for Nondestructive Testing, Vol. 31, No. 1, pp. 68-76 (2011)

Cited by

  1. Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank vol.35, pp.5, 2015, https://doi.org/10.7779/JKSNT.2015.35.5.332