DOI QR코드

DOI QR Code

Comparison of Intensity-modulated Radiation Therapy (IMRT), Uniform Scanning Proton Therapy (USPT), and Intensity-modulated Proton Therapy (IMPT) for Prostate Cancer: A Treatment Planning Study

전립선 암 환자의 IMRT, USPT, 및 IMPT 기법에 따른 치료효과 비교

  • Son, Kihong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Seungryong (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Jin Sung (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Han, Youngyih (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ju, Sang Gyu (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ahn, Sung Hwan (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Eunhyuk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Shin, Jung Suk (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Won (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Pyo, Hongryul (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Choi, Doo Ho (Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 손기홍 (한국과학기술원 원자력 및 양자공학과) ;
  • 조승룡 (한국과학기술원 원자력 및 양자공학과) ;
  • 김진성 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 한영이 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 주상규 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 안성환 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신은혁 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 신정석 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 박원 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 표홍렬 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실) ;
  • 최두호 (성균관대학교 의과대학 삼성서울병원 방사선종양학교실)
  • Received : 2013.09.02
  • Accepted : 2013.09.07
  • Published : 2013.09.30

Abstract

This study assessed compared photon and proton treatment techniques, such as intensity modulated radiation therapy (IMRT), uniform scanning proton therapy (USPT), and intensity modulated proton therapy (IMPT), for a total of 10 prostate cancers. All treatment plans delivered 70 Gy to 95% of the planned target volume in 28 fractions. IMRT plans had 7 fields for the step and shoot technique, while USPT and IMPT plans employed two equally weighted, parallel-opposed lateral fields to deliver the prescribed dose to the planned target. Inverse planning was then incorporated to optimize IMPT. The homogeneity index (HI) and conformity index (CI) for the target and the normal tissue complication probability (NTCP) for organ at risk (OAR) were calculated. Although the mean HI and CI for target were not significantly different for each treatment techniques, the NTCP of the rectum was 2.233, 3.326, and 1.707 for IMRT, USPT, and IMPT, respectively. The NTCP of the bladder was 0.008, 0.003, and 0.002 respectively. The NTCP values at the rectum and bladder were significantly lower using IMPT. Our study shows that using proton therapy, particularly IMPT, to treat prostate cancer could be beneficial compared to 7-field IMRT with similar target coverage. Given these results, radiotherapy using protons, particularly optimized IMPT, is a worthwhile treatment option for prostate cancer.

본 연구는 총 10명의 전립선 암 환자를 대상으로 세기조절방사선치료(IMRT), 균일스캐닝양성자치료(USPT), 그리고 세기조절양성자치료(IMPT)기술을 이용한 치료계획의 결과를 비교, 평가 하였다. 각 치료 계획은 타깃 체적의 95%에 70 Gy가 28회 분할 조사되도록 하였으며 세기조절방사선치료(IMRT)에서는 step-and-shoot 기법을 이용하여 총 7개의 빔을 사용하여 방사선을 조사하였고, 균일세기양성자치료(USPT)와 세기조절양성자치료(IMPT)에서는 동일한 방사선 가중치의 측방향대향조사면(lateral opposing field)를 사용하여 타깃에 처방선량이 전달되도록 하였다. 한편, 세기조절양성자치료(IMPT)의 최적화를 위해 IMRT치료와 유사한 Inverse planning을 수행하였다. 결과 비교를 위해 타깃의 균질성지수(homogeneity index) 및 동형지수(conformity index)와 정상조직의 정상조직합병증확률(NTCP)을 계산하였다. 비록 치료기법간에 균질성지수(homogeneity index), 동형지수(conformity index)차이가 크지 않았지만, 직장의 경우 각 세기조절방사선치료(IMRT), 균일스캐닝 양성자치료(USPT) 및 세기조절양성자치료(IMPT)에서 2.233, 3.326 및 1.707로 계산되었다. 또한 방광의 정상조직합병증확률(NTCP)는 0.008, 0.003, 및 0.002를 나타내었다. 직장과 방광의 NTCP 값이 IMPT을 사용할 때 유의하게 낮은 값을 보이는 것을 확인하였다. 본 연구를 통해 전립선 암의 방사선 치료 시 세기조절방사선치료(IMRT)보다 양성자를 이용한 방사선 치료, 특히 최적화된 세기조절양성자치료(IMPT)가 치료 효과를 높일 수 있는 치료계획이 될 수 있음을 확인할 수 있었다.

Keywords

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International J of Cancer 127(12):2893-2917 (2010)
  2. Weber DC, Trofimov AV, Delaney TF, Bortfeld T: A treatment planning comparison of intensity modulated photon and proton therapy for paraspinal sarcomas. Int J Radiat Oncol Biol Phys 58(5):1596-1606 (2004) https://doi.org/10.1016/j.ijrobp.2003.11.028
  3. Chung JB, Kim TS, Kim IA, Lee JW, Cho W, Suh TS: The effect of photon energy on the intensity-modulated radiation therapy plan for prostate cancer: a planning study. Korean Phys Soc 59(1):183-188 (2011) https://doi.org/10.3938/jkps.59.183
  4. Trofimov A, Nguyen PL, Coen JJ, et al: Radiotherapy treatment of early-stage prostate cancer with IMRT and protons: a treatment planning comparison. Int J Radiat Oncol Biol Phys 69(2):444-453 (2007) https://doi.org/10.1016/j.ijrobp.2007.03.018
  5. Goitein M, Lomax AJ, Pedroni ES: Treating cancer with protons. Physics Today 55(9):45-50 (2002) https://doi.org/10.1063/1.1522215
  6. Jones B, Burnet N: Radiotherapy for the future - Protons and ions hold much promise. British Medical J 330(7498):979-980B (2005) https://doi.org/10.1136/bmj.330.7498.979
  7. Goitein M, Lomax AJ, Pedroni ES: Weighing proton therapy's clinical readiness and costs. Physics Today 56(6):13-14 (2003) https://doi.org/10.1063/1.4797136
  8. Kase Y, Yamashita H, Fuji H, et al: A treatment planning comparison of passive-scattering and intensity-modulated proton therapy for typical tumor sites. J of Radiation Research (2011)
  9. Nutting CM, Convery DJ, Cosgrove VP, et al: Reduction of small and large bowel irradiation using an optimized intensity-modulated pelvic radiotherapy technique in patients with prostate cancer. Int J Radiat Oncol Biol Phys 48(3):649-656 (2000) https://doi.org/10.1016/S0360-3016(00)00653-2
  10. Lomax A: Intensity modulation methods for proton radiotherapy. Phys Med Biol 44(1):185-205 (1999) https://doi.org/10.1088/0031-9155/44/1/014
  11. Oelfke U, Bortfeld T: Inverse planning for photon and proton beams. Med Dos 26(2):113-124 (2001) https://doi.org/10.1016/S0958-3947(01)00057-7
  12. Cella L, Lomax A, Miralbell R: Potential role of intensity modulated proton beams in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 49(1):217-223 (2001) https://doi.org/10.1016/S0360-3016(00)01368-7
  13. Steneker M, Lomax A, Schneider U: Intensity modulated photon and proton therapy for the treatment of head and neck tumors. Radiat Oncol 80(2):263-267 (2006) https://doi.org/10.1016/j.radonc.2006.07.025
  14. Huchet A, Caudry M, Belkacemi Y, et al: Volume-effect and radiotherapy [II]. Part II: volume-effect and normal tissue. Cancer Radiotherapie 7(5):353-362 (2003) https://doi.org/10.1016/S1278-3218(03)00082-9
  15. Mohan R, Wu Q, Manning M, Schmidt-Ullrich R: Radiobiological considerations in the design of fractionation strategies for intensity-modulated radiation therapy of head and neck cancers. Int J Radiat Oncol Biol Phys 46(3):619-630 (2000) https://doi.org/10.1016/S0360-3016(99)00438-1
  16. Dearnaley DP, Hall E, Lawrence D, et al: Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. British J of Cancer 92(3):488-498 (2005) https://doi.org/10.1038/sj.bjc.6602301
  17. Peeters ST, Heemsbergen WD, Koper PC, et al: Doseresponse in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J of Clinical Oncology 24(13):1990-1996 (2006) https://doi.org/10.1200/JCO.2005.05.2530
  18. Pollack A, Zagars GK, Starkschall G, et al: Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53(5):1097-1105 (2002) https://doi.org/10.1016/S0360-3016(02)02829-8
  19. Michalski JM, Winter K, Purdy JA, et al: Toxicity after three-dimensional radiotherapy for prostate cancer on RTOG 9406 dose Level V. Int J Radiat Oncol Biol Phys 62(3):706-713 (2005) https://doi.org/10.1016/j.ijrobp.2004.11.028
  20. Rossi CJ Jr, Slater JD, Yonemoto LT, et al: Influence of patient age on biochemical freedom from disease in patients undergoing conformal proton radiotherapy of organ-confined prostate cancer. Urology 64(4):729-732 (2004) https://doi.org/10.1016/j.urology.2004.04.043
  21. Vargas C, Fryer A, Mahajan C, et al: Dose-volume comparison of proton therapy and intensity-modulated radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 70(3):744-751 (2008) https://doi.org/10.1016/j.ijrobp.2007.07.2335

Cited by

  1. Comparison of the BANGkit™ and the PRESAGE™ gel dosimeters for use with a CCD-based optical CT scanner vol.64, pp.5, 2013, https://doi.org/10.3938/jkps.64.740
  2. A virtual simulator designed for collision prevention in proton therapy. vol.42, pp.10, 2013, https://doi.org/10.1118/1.4931411
  3. Dosimetric planning study for the prevention of anal complications after post-operative whole pelvic radiotherapy in cervical cancer patients with hemorrhoids. vol.88, pp.1056, 2013, https://doi.org/10.1259/bjr.20150223
  4. Dosimetric Comparisons of Intensity-Modulated Radiotherapy, Volumetric Modulated Arc Therapy, Tomotherapy, Stereotactic Radiosurgery, and Proton Therapy for Treatment of Patients with a Vestibular Sch vol.74, pp.4, 2019, https://doi.org/10.3938/jkps.74.389
  5. Recent advances in radiation therapy and photodynamic therapy vol.8, pp.4, 2021, https://doi.org/10.1063/5.0060424