Isolated abducens nerve paresis related to ruptured vertebral artery (VA) aneurysm is rare. It usually occurs bilaterally or ipsilaterally to the pathologic lesions. We report the case of a contralateral sixth nerve palsy following ruptured dissecting VA aneurysm. A 38-year-old man was admitted for the evaluation of a 6-day history of headache. Abnormalities were not seen on initial computed tomography (CT). On admission, the patient was alert and no signs reflecting neurologic deficits were noted. Time of flight magnetic resonance angiography revealed a fusiform dilatation of the right VA involving origin of the posterior inferior cerebellar artery. The patient suddenly suffered from severe headache with diplopia the day before the scheduled cerebral angiography. Neurologic examination disclosed nuchal rigidity and isolated left abducens nerve palsy. Emergent CT scan showed high density in the basal and prepontine cistern compatible with ruptured aneurismal hemorrhage. Right vertebral angiography illustrated a right VA dissecting aneurysm with prominent displaced vertebrobasilar artery to inferiorly on left side. Double-stent placement was conducted for the treatment of ruptured dissecting VA aneurysm. No diffusion restriction signals were observed in follow-up magnetic resonance imaging of the brainstem. Eleven weeks later, full recovery of left sixth nerve palsy was documented photographically. In conclusion, isolated contralateral abducens nerve palsy associated with ruptured VA aneurysm may develop due to direct nerve compression by displaced vertebrobasilar artery triggered by primary thick clot in the prepontine cistern.

Key Words: Vertebra artery · Subarachnoid hemorrhage · Abducens nerve paralysis.
Abducens Nerve Palsy after Ruptured Vertebral Artery Aneurysm

JS Jeon, et al.

The chance of the direct nerve contact with aneurysm could be ruled out in our patient because the patient suffered left sixth nerve palsy after ruptured right dissecting V A aneurysm. Coppeto and Chan\(^1\) and Dumas and Shults\(^2\) showed ipsilateral sixth nerve palsy to the same direction of V A aneurysm. Thick prepontine cisternal hemorrhage was found in an intracranial CT scan, but the possibility of nerve paresis was thought to be low, considering the prepontine segment of the abducens nerve, because direct compression by cisternal hematoma causes gaze. Emergent intracranial CT demonstrated a high density area in the basal cistern and prepontine cistern without ventriculomegaly (Fig. 1C, D).

Right vertebral angiography (Fig. 2A, B) revealed a dissecting aneurysm of right distal vertebral artery compromising proximal PICA with blood supplying to the left proximal portion of PICA through glomus-like vascular channel from right VA. In particular, the vertebrobasilar artery was remarkable flexed to the inferior on the left side. A double-stent method was performed for ruptured dissecting vertebral artery aneurysm. No diffusion restriction was found in follow-up magnetic resonance imaging (MRI) of the brain stem (Fig. 2C).

Four weeks later, another angiography (Fig. 2D) illustrated the upward displacement of the vertebrobasilar artery compared with previous images and a CT scan (Fig. 2E) showed hemorrhage resolution in the prepontine cistern. Full recovery of left abducens nerve paresis was achieved in 11 weeks after onset (Fig. 3B).

DISCUSSION

The incidence of isolated abducens nerve palsy following VA aneurysm is rare. To our knowledge, only three cases of VA aneurysm (two ruptured and one unruptured) presenting with unilateral sixth nerve paralysis have been reported\(^3\)–\(^5\).

The possible mechanisms of the isolated nerve palsies related to aneurysm of VA can be divided into several groups: direct compression by aneurysm\(^1\)–\(^2\), brain stem or nerve compression due to thick cisternal hematoma, especially prepontine cistern\(^7\), stretch nerve injury on the petrous apex triggered by increased ICP\(^8\), and vascular insufficiency to the abducens nuclei by vasospasm\(^9\).
CONCLUSION

Isolated contralateral abducens nerve palsy following ruptured VA aneurysm may develop as a result of nerve compression secondary by displaced vertebrobasilar artery due to primary thick clot in the prepontine cistern.

References