Multiple Densities of the Chronic Subdural Hematoma in CT Scans

Hye-Ran Park, M.D., Kyeong-Seok Lee, M.D., Ph.D., Jae-Jun Shim, M.D., Ph.D., Seok-Mann Yoon, M.D., Ph.D., Hack-Gun Bae, M.D., Ph.D., Jae-Won Doh, M.D., Ph.D.
Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea

Objective : Density of the chronic subdural hematoma (cSDH) is variable. It often appears to be mixed density. Multiple densities of cSDH may result from multiple episodes of trauma. We investigated the frequency of mixed density and the causes of head injuries representing each density.

Methods : We could collect 242 cases of chronic SDH. The cSDHs were classified into four groups; hypodensity, homogeneous isodensity, layered type, and mixed type on the basis of CT scans.

Results : The density of cSDH was isodense in 115 patients, hypodense in 31 patients, mixed in 79 cases, and layered in 17 cases. The cSDH was on the left side in 115 patients, on the right side in 70 patients, and bilateral in 40 patients. The history of trauma was identifiable in 122 patients. The etiology could be identified in 67.7% of the hypodense hematomas, while it was obscure in 59.5% of the mixed hematomas.

Conclusion : Mixed density of cSDH results from multiple episodes of trauma, usually in the aged. It is hard to remember all the trivial traumas for the patients with the mixed density cSDHs. Although there were membranes within the mixed density hematomas, burr-holes were usually enough to drain the hematomas.

Key Words : Chronic subdural hematoma · Computed tomography · Craniocerebral trauma · Diagnosis.

INTRODUCTION

Computed tomography (CT) remains the preferred diagnostic method for the chronic subdural hematoma (cSDH)9,10. Chronic SDH has a variety of imaging characteristics in CT; low, intermediate, or high density relative to brain parenchyma9,10. Chronic SDH frequently appears to be mixed density9,10. With current high-resolution CT scanners, homogeneous isodensity becomes rare10. Acute trauma on the patients with cSDH may develop acute bleeding over the cSDH, which would produce mixed density10. Repeated episodes of acute bleeding may result mixed densities of SDH. In other words, mixed density suggests multiple episodes of trauma. We investigated the frequency of mixed density in cSDH. We also studied the cause of trauma representing each density of cSDH.

MATERIALS AND METHODS

We retrospectively examined the medical records and CT scans of 259 consecutive patients who diagnosed as cSDH from January 2006 to December 2011. We excluded 17 patients who diagnosed by magnetic resonance imaging (MRI) only before surgery. The male/female ratio was 186/56.

The cSDHs were classified into four groups; hypodensity (<25 HU), homogeneous isodensity (25-35 HU), layered type, and mixed type on the basis of CT scans. Although we examined the history of head trauma minutely, the etiology was identifiable in only 122 patients (50.4%). Statistical analysis was performed using the chi-square test or Fisher’s exact test. For the statistical significance, we divided the etiology into either known or unknown groups. Differences were considered significant if the probability value was less than 0.05.

RESULTS

Age distribution
The density of cSDH was isodense in 115 patients, hypodense in 31 patients, mixed in 79 cases, and layered in 17 cases (Table 1).
Isodensity was the most common density of cSDHs. There are some reports that the hypodensity was the most common type in CT scanning. However, isodense cSDHs were often reported as more common than the hypodense lesions. It may be that mixed or layered types were more common in the oldest age, while isodense or hypodense SDHs were more common the age of less than 70 years (p=0.0002 by Fisher).

Laterality

The cSDH was on the left side in 115 patients, on the right side in 70 patients, and bilateral 40 patients (Table 2). Bilateral hematomas tended to be hypodense, while isodense one tended to locate on the left side (p=0.015 by Fisher).

Etiology

We identified the causes of head trauma in 122 patients (50.4%). Slipping was the most common cause of head trauma (Table 3). Motor vehicle accidents or falling was also relatively common known cause. The etiology could be identified in 67.7% of the hypodense hematomas, while the cause was obscure in 59.5% of the mixed hematomas (p=0.047 by chi-square).

Treatment

The preferred surgical technique was single burr-hole drainage under local anesthesia (Table 4). Conservative treatment was used in more than 40% of the patients with hypodense hematomas. We performed craniotomy for 2 patients with mixed density hematomas and one patient with isodense hematomas. We removed some clot with gentle irrigation and suction.

In one patient, we used an endoscopy to suck out the semisolid clot around the corner of the hematoma cavity. The method of treatment differed among the hematoma densities (p=0.017 by Fisher).

DISCUSSION

Isodensity was the most common density of cSDHs. There are some reports that the hypodensity was the most common type in CT scanning. However, isodense cSDHs were often reported as more common than the hypodense lesions. It may de-
Mixed or layered types were more common in the oldest age, while isodense or hypodense SDHs were more common the age of less than 70 years. This uneven distribution result from not only the fact that the reserving capacity is maximal in the oldest age, but also the oldest patients are vulnerable to repeated trauma. Also, elderly patients cannot remember their trivial trauma events because of cognitive impairment. The oldest age implies brain atrophy and too high reserving capacity, which may cause overlapping hematomas or recurrence. Multilayer intra-hematomatous structure showed a high recurrence rate.

Bilateral hematomas tended to be hypodense, while isodense one tended to locate on the left side, in this study. The reason is the cSDH originated from SDGs would be bilateral and hypodense. Cranial asymmetry is also the cause of the left prevalence of CSDH.

It is hard to obtain the exact cause of trauma in cSDHs. A definite history of head injury was often obtained only in a half of cases, and more than 90% of previous head injuries were mild. We could identify the causes of head trauma in less than a half. The etiology was obscure especially in the mixed hematomas. The reason is that the multiple episodes of trivial trauma are hard to remember. Considering the facts that mixed types were more common in elderly patients and the cause of trauma was obscure in the mixed hematomas, we could deduce mixed types occurred by multiple trivial trauma in elderly people.

There are many conservative or surgical treatment methods for the management of cSDH. Burr-hole drainage is sufficient for most patients and this became the procedure of choice. We could remove the hematoma by single or two burr-holes in most cases. For the bilateral cSDHs, we used unilateral single burr-hole drainage. We used double burr-holes with saline irrigation in only a few patients. In patients with mixed density cSDH, often the hematomas were a mixture of semisolid clot and liquefied hematoma. Even in acute-on-chronic SDHs the clot was not so hard due to preexisting hemolytic activity of the cSDH. We did not try to remove the clot vigorously. We placed a soft silicon drain in all cases, which was usually removed within 2 days. Semisolid clot was usually drained out or resolved within a few days with or without urokinase or tissue plasminogen activator. Septation within the hematoma was usually not complete in either multilobule or multi-layer hematomas. There was free communication, which allows draining out the hematomas. Cranio-tomy may be necessary for those instances in which the subdural collection reaccumulates, the brain fails to expand, or there is solid hematoma.

CONCLUSION

Mixed density of cSDH was relatively common, being 33% in this study. Mixed density of cSDH results from multiple episodes of trauma, especially in the oldest age. The etiology was frequently obscure in the mixed density cSDHs, since it was hard to remember all the trivial traumas. Although there were membranes
within the hematoma, burr-hole was usually enough to drain the hematomas.

References