Galeal Tack-Up Sutures to Prevent Subgaleal Cerebrospinal Fluid Collection

Won Ho Choi, M.D., Chang Taek Moon, M.D., Ph.D., Young-Cho Koh, M.D., Young Il Chun, M.D., Joon Cho, M.D., Sang Woo Song, M.D.
Department of Neurosurgery, Konkuk University Medical Center, Seoul, Korea

Objective : Postoperative subgaleal cerebrospinal fluid (CSF) collection is considered as one of the common minor surgical complication which can lead to prolonged hospitalization. We introduce “galeal tack-up suture” to prevent postoperative subgaleal CSF collection.

Methods : Galeal tack-up suture consists of various surgical techniques which aim to fix galea to cranium in order to prevent CSF pooling in subgaleal space. A total of 87 patients who underwent craniotomy were divided into two groups while closing the wound : group A with galeal tack-up suture and group B with routine wound closure without galeal tack-up suture. The patients were observed for postoperative subgaleal CSF collection.

Results : Among 87 craniotomy cases, galeal tack-up suture was performed in 32 cases and routine wound closure was done in 55 cases. Postoperative subgaleal CSF collection occurred in 13 cases (15%) in which 12 cases occurred in group B patients and 1 case occurred in group A patients (p=0.026).

Conclusion : Galeal tack-up suture is an easy and effective technique in wound closure to prevent postoperative CSF collection.

Key Words : Cerebrospinal fluid leak · Craniotomy · Scalp · Sutures.
scalp, one of the three methods of “galeal tack-up suture” was used (Fig. 1).

First method of “galeal tack-up suture” utilizes the pairs of small hole burred for central dural tenting suture. 4-0 vicryl attached to curved needle is passed through the hole from external side of bone flap to internal side, and then passed to external side again through the adjacent hole. For second method, pairs of V-shaped holes are burred on the surface of bone flap but not piercing through it. Third method utilizes the cranial plate used to fix the bone flap. Single piece of straight titanium plate can be installed independently to be used as an anchor. This anchor is especially useful in cases of suboccipital craniotomy or foramen magnum decompression where making of holes directly (straight or V-shaped) is difficult.

Three to five suture materials are prepared depending on the size of the bone flap. While closing the scalp in layer by layer fashion, galea aponeurotica is sutured with the bone flap using the previously prepared sutures (Fig. 2).

Statistical analysis

The chi-square test was used to test for an association between galeal tack-up suture and postoperative subgaleal CSF collection. The association between age and sex, and the incidence of subgaleal CSF collection was tested using the logistic regression test.

RESULTS

A total of 87 cases of craniotomy for intradural lesions were done in 75 patients. Six patients underwent repeated surgery for brain tumor, one of them for three times. Two patients underwent revision surgery for persistent CSF leakage, 1 patient underwent revision surgery for subdural empyema, and 2 patients underwent cranioplasty for craniectomy state in which dural tearing occurred while dissecting due to dura-galeal adhesion. There were 35 males and 40 females with mean age of 49 years old (range : 1-82). Intradural lesions included 32 cases of vascular lesion, 36 cases of brain tumor, 13 cases of trauma, 3 cases of congenital lesion, and 3 cases of infection (Table 1). Galeal tack-up suture was performed in 32 cases and routine wound closure without galeal tack-up was done in 55 cases. The three different galeal tack-up suture techniques were applied according to the size, location, and shape of the bone flap where it is appropriate.

Subgaleal CSF collection occurred in 13 (15%) of 87 cases. The frequency of subgaleal CSF collection was higher in infratentorial lesions (50%). Twelve cases occurred in group B patients where only routine wound closure was done and there was 1 case of postoperative CSF collection in group A patients with galeal tack-up suture. In supratentorial lesions, galeal tack-up suture tended to be effective ($p=0.051$) but was not proven statistically significant. However, galeal tack-up suture applied in total sum of cases showed significant value statistically ($p=0.026$) (Table 2). Among 13 patients with subgaleal CSF collection, 8 patients were treated with percutaneous aspiration followed by compression with elastic bandage and 1 patient with lumbar drain. In 4 patients, routine treatment has failed to stop subgaleal CSF collection so revision surgery had to be done. There was no statistical significance between age ($p=0.401$), sex ($p=0.154$) and the incidence of subgaleal CSF collection.

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>No. of patients</th>
<th>No. of cases with galeal tack-up suture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain abscess</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Subdural empyema</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Trauma</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>Tumor</td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td>Vascular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracerebral hemorrhage</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Moyamoya disease</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Subarachnoid hemorrhage</td>
<td>17</td>
<td>7</td>
</tr>
<tr>
<td>Unruptured aneurysm</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 2. Subgaleal CSF collection according to different locations of target lesions

<table>
<thead>
<tr>
<th>Location</th>
<th>Tack-up suture (+)</th>
<th>Tack-up suture (-)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CSF collection (+)</td>
<td>CSF collection (-)</td>
<td></td>
</tr>
<tr>
<td>Supratentorium</td>
<td>1</td>
<td>10</td>
<td>0.051</td>
</tr>
<tr>
<td>Infratentorium</td>
<td>0</td>
<td>2</td>
<td>0.333</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>12</td>
<td>0.026</td>
</tr>
</tbody>
</table>

CSF: cerebrospinal fluid

DISCUSSION

Postoperative CSF leakage frequently results in CSF pooling in subgaleal space. CSF collected in subgaleal space can be diagnosed by several methods such as brain computed tomography, magnetic resonance imaging but it can also be detected by simply touching the operation site which feels like water-filled balloon. It is usually considered one of the minor postoperative complications but if left untreated, it can cause severe brain infection such as meningitis. It also results in prolonged hospital stay, increased treatment costs, and revision surgery in some cases. Several methods have been reported for the treatment of CSF collection. Usually, it can be treated by bed rest with head elevation, percutaneous aspiration followed by compression with elastic bandage, and installation of lumbar drain but sometimes requires repeated surgery for CSF fistula. Percutaneous aspiration and lumbar drain can also result in intracranial infection. It has been accepted that careful watertight dural closure is imperative procedure for prevention of postoperative CSF leakage after the operation for intradural lesion. Application of fibrin glue on the dural suture line has also been known to be effective measure for prevention of postoperative CSF leakage. But even with all the preventive measures, some cases of CSF leakage incurs in the operation for intradural lesions. Grotenhuis reported that in the series of 412 patients of nontraumatic neurosurgical cases, postoperative CSF leakage occurred in 44 (10.7%) patients including self-limiting subcutaneous minor CSF collection. Kwon et al. reported that in the series of 47 cases which underwent orbital roof craniotomy and superolateral orbital craniotomy, 13 (27.6%) cases of periorbital CSF collection had occurred.

CSF leaks through the dural suture lines and defects which were failed to close properly during the operation. Leaked CSF is pooled in epidural and subgaleal spaces and disrupts the adhesion between galea and cranial vault by creating dead space filled with CSF. Routine dural tenting suture are performed to prevent epidural hemorrhage. It can also prevent leaked CSF to pool in the epidural space. By performing galeal tack-up suture, single large subgaleal space is removed and divided into small multiple subgaleal spaces and galea becomes tightly adhered to the cranial vault which prevents CSF to pool. Groel previously described 'Tenting' stitches for the scalp can effectively reduce subgaleal collection of CSF in 1991. They utilized pericranium-galeal tenting but we did not use it since the technique is more difficult than galea-cranium tenting and also the suture strength is weak. Kato et al. reported a CSF leak rate of 0.5% by using galea-cranium suture method in their technical note in 1999. They utilized v-shape holes and plate but the clinical data was not suggested. Among the surgical techniques suggested in the two technical reports, we chose the appropriate methods to apply in clinical setting and the results were statistically analyzed. Our study indicated that galeal tack-up suture is an effective and easy-to-perform technique for prevention of postoperative subgaleal CSF collection which does not require additional costs.

All three techniques are essentially the same that aims to attach galea to the cranium and remove the space for CSF to pool. These different techniques can be chosen and applied in most of the craniotomies with different size, shape, and location of bone flaps where it is appropriate.

CONCLUSION

Even with only minor efforts, galeal tack-up suture can effectively prevent subgaleal CSF collection in surgical wound closure. In various situations of craniotomy, three different surgical techniques can be utilized appropriately.

• Acknowledgements

This work was supported by Konkuk University in 2013.

References

