DOI QR코드

DOI QR Code

Analysis of Shear Buckling Stresses for Steel Pipes by Detailed Parametric Study

매개변수해석을 통한 원형 강관의 전단좌굴응력 상세분석

  • Mha, Ho-Seong (School of Civil and Environmental Engineering, Hoseo University) ;
  • Cho, Kwang Il (Steel Structure Research Division, Research Institute of Industrial Science & Technology)
  • 마호성 (호서대학교, 토목공학과) ;
  • 조광일 (포항산업과학연구원 강구조연구소)
  • Received : 2013.08.19
  • Accepted : 2013.10.01
  • Published : 2013.10.27

Abstract

Shear buckling stresses of steel pipes due to the lateral forces have been analyzed via parametric analysis. Detailed FEM models are prepared, and steel types, thickness, radii and length of steel pipes are selected as parameters. STK400, STK490 and SM570 are used and the thickness of pipe is 2mm and 40mm. The radii(R) and lengths(L) are determined based on the values satisfying the following relationship as R/t=20~400 and L/R=1~3. The shear buckling stresses decrease for all types of considered steels as R/t increase from 20 to 200. High strength steels are more sensitive to R/t, and also have an bigger effect on shear buckling stresses than low strength steels. It is found that shear buckling stresses decrease as L/R increases, showing that the steel pipes become weak as the length of the steel pipe increases.

본 연구에서는 매개변수해석을 통하여 횡력에 의한 강관의 전달좌굴응력에 대해 분석을 하였다. 비선형좌굴에 의한 전단좌굴응력을 산정하기 위해 ABAQUS의 상세 쉘 모델을 적용한 유한요소해석을 수행하였으며, 매개변수로는 강종, 두께, 반지름 그리고 길이를 선택하였다. 해석대상 강종은 STK400, STK490, SM570이며, 강재의 두께는 2mm, 40mm로 하였고 반지름과 부께의 비(R/t)는 20~200, 길이와 반지름의 비(L/R)는 1~3이 되도록 하였다. 모든 강종에서 R/t이 20에서 200으로 변화하였을 때 전단좌굴응력은 감소하였고, 저강도 강재보다 고강도 강재일수록 R/t의 변화에 민감하며, 전단좌굴응력에 미치는 영향도 커지는 것으로 나타났다. 또한 L/R이 증가할수록 전단좌굴강도가 작아지는 것으로 보아 강관의 길이가 길수록 전단좌굴에 취약하다는 것을 알 수 있다.

Keywords

References

  1. Batdorf, S.B., Stein, M., and Schildcrout, M. (1947) Critical Shear Stress of Curved Rectangular plates, NACA TN No.1342, National Advisory Committee for Aeronautics, Washington, D.C.
  2. Stein, M. and Yeager, D.J. (1949) Critical Shear Stress of Curved Rectangular Pane1 with a Central Stiffener, NACA TN No.1972, National Advisory Committee for Aeronautics, Washington, D.C.
  3. Mariani, N., Mozer, J.D., Dyme, C.L., and Culver, C.G. (1973) Transverse Stiffener Requirements for Curved Webs, J. Struct. Div., ASCE, Vol. 99, No. 4, pp.757-771.
  4. Lundquist, E.E. (1935) Strength Tests of Thin-Walled Duralumin Cylinders in Combined Transverse Shear and Bending, NACA Technical Note, No. 523.
  5. Lu, S.Y. (1965) Buckling of Cantilever Cylindrical Shell with a Transverse End Load, AIAA Journal, Vol. 3, No. 12, pp.2305-2351. https://doi.org/10.2514/3.3360
  6. Lee, R.-L. (1969) Buckling of Stiffened Cylindrical Shell with Transverse Shear Load, AIAA Journal, Vol. 7, No. 4, pp.1095-1097.
  7. Schroder, P. (1974) The Buckling Behaviour of Transverse Loaded Circular Cylinders, Technical Translation ESRO TT-105.
  8. Galletly, G.D. and Blachut, J. (1983) Buckling of a Cantilevered Cylindrical Shell Subjected to a Transverse Shearing Force at Its Tip, Proceedings of the Third International Colloquium on Stability of Metal Structures, Paris, pp.16-17.
  9. Yamaki, N. (1984) Elastic Stability of Circular Cylindrical Shells, North-Holland, pp.453-476.
  10. Choi, H.-S. and Hangai Y. (1984) Local Buckling of Cylindrical Tanks under the Horizontal Load, Bulletin of Earthquake Resistant Structure Research Center, No. 17, pp.3-11.
  11. 최현식(1995) 강제변위에 의한 탑상형 원통쉘의 응력해석에 관한 연구, 대한건축학회 논문집, 대한건축학회, 제11권, 제9호, pp.175-182. Choi, H.-S. (1995) A Study on Stress Analysis of Cantilevered Cylindrical Shells under Prescribed Displacement, Journal of Architectural Institute of Korea, Vol. 11, No. 9, pp.175-182.
  12. 국토해양부, 도로교설계기준 (2010). Ministry of Land, Transport and Maritime Affairs (2010) Design Code of Road-Bridge.
  13. ABAQUS User's Manual 6.4, Hibit, Karlson and Sorenson.
  14. 마호성, 조광일(2012) 강관파일의 전단좌굴응력에 관한 매개변수 연구, 한국방재학회 논문집, 한국방재학회, 제12권, 제5호, pp.41-46. Mha, H.S. and Cho, K.I. (2012) A Parametric Study on Shear Buckling Stresses of Steel Pile, Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 5, pp.41-46. https://doi.org/10.9798/KOSHAM.2012.12.5.041
  15. Athiannan, K. and Palaninathan, R. (2004) Buckling of Cylindrical Shells under Transverse Thear, Thin-Walled Structures, Vol. 42, No. 9, pp.1307-1328. https://doi.org/10.1016/j.tws.2004.03.019

Cited by

  1. 고강도 강관과 PHC파일이 활용된 흙막이 버팀보의 좌굴해석 및 설계 vol.27, pp.4, 2013, https://doi.org/10.7781/kjoss.2015.27.4.411
  2. Experimental Study on Ultimate Load of System Scaffolding According to Catwalk Width and Bracing Installation vol.32, pp.2, 2013, https://doi.org/10.7781/kjoss.2020.32.2.127