Characterization of Solid Acid Electrolyte CsH₅(PO₄)₂ by NMR Spectroscopy

Seen Ae Chae,[†] Young Eun Lee,[†] Oc Hee Han,^{†,‡,*} Dong Hoon Kim,[§] and Hong-In Lee[§]

[†]Daegu Center, Korea Basic Science Institute, Daegu 702-701, Korea. ^{*}E-mail: ohhan@kbsi.re.kr [‡]Graduate School of Analytical Science and Technology Chungnam National University, Daejeon 305-764, Korea [§]Department of Chemistry, Kyungpook National University, Daegu 702-701, Korea Received September 6, 2013, Accepted September 15, 2013

Key Words : Solid acid electrolyte, Cesium pentahydrogen diphosphate, Proton dynamics, Cesium dihydrogen phosphate, Solid-state NMR spectroscopy

The electrolyte is one of the most important constituents of fuel cells (FCs), and determines the application areas, the performance, and the operation temperature range. The high proton conductivities of solid acids in specific temperature ranges have made them as excellent candidates for FC electrolytes.¹ Solid acids are both an acid and salt in a solid state, and can generally be described as $M_aH_b(XO_4)_c$, where M is Cs, Rb, K, Na, or NH₄ and X is P, S, As, or Se. Ever since CsHSO₄ (CHS) electrolyte was demonstrated for FCs by Halie *et al.*¹ various solid acid electrolytes for FCs have been reported.^{2,3} Even better performance than that with CHS was reported with CsH₂PO₄ (CDP) only, or with CDP/ Si-oxide composites in humidified conditions.^{2,3} All of the CDP in the CDP/SiP₂O₇ composite electrolyte was observed by X-ray diffraction (XRD) to convert to CsH₅(PO₄)₂ (CPDP) at 220 °C and higher, indicating that the good conductivity of this composite electrolyte over 150-250 °C was mainly from CPDP, not CDP.³

Solid acid electrolytes have been characterized primarily by XRD. However, solid-state nuclear magnetic resonance spectroscopy (SS-NMR) can be more powerful. SS-NMR can be used to directly observe nuclei, detect light atoms and phases without a long-range order, and provide dynamics information such as ionic movement and molecular motion in more detail. Two hydrogens in CDP were identified by ¹H magic angle spinning (MAS) NMR spectroscopy.⁴ Static ¹H and ³¹P NMR experiments on a single crystal of CDP at different temperatures indicated that the reorientation of H₂PO₄⁻ anions plays an important role in the proton conduction of CDP.⁵ The hydrogen dynamics of CPDP were studied at various temperatures by static ¹H NMR,⁶ and recently, the results were reported for ³¹P and ¹³³Cs MAS NMR spectra of CDP and ¹H, ³¹P, and ¹³³Cs MAS NMR spectra of the mixture of CDP and CPDP were reported.⁷ The peaks corresponding to each compound were assigned, but the ¹H peaks of the mixture of CDP and CPDP were not clearly assigned due to the possible overlapping of the signals for CPDP and CDP.⁷ In this work, the ¹H, ³¹P, and ¹³³Cs MAS NMR spectra of pure CPDP with clear peak assignments are presented, and the confirmation of the purity of CPDP is demonstrated, which is not possible with XRD techniques.

Since the stoichiometric mole ratio of H_3PO_4 and Cs_2CO_3 for CPDP synthesis is 4:1, as described by $4H_3PO_4 + Cs_2CO_3$

 \rightarrow 2CsH₅(PO₄)₂ + H₂O + CO₂ \uparrow , CPDP was prepared as follows. First, 16 mmol H₃PO₄ (85 wt %, d = 1.685 g/mL, Sigma Aldrich, USA) was placed into a 50-mL beaker, and 4 mmol Cs₂CO₃ (99.995%, Sigma Aldrich) was added. All of the reagents were weighed for accurate stoichiometric matching. The reagent mixture slurry was stirred well with a glass bar prior to carefully adding 1 mL of distilled water into the slurry to dissolve all the Cs₂CO₃, and stirred more until the solution became transparent. The transparent solution was transferred to a clean beaker and kept at 100 °C for 24 h. The synthesized CPDP powder was identified with X'Pert PRO-MPD XRD (Philips, Netherland). All NMR spectra were obtained on a 14.1 T unity INOVA NMR spectrometer (Varian, USA) using a MAS probe for 2.5-mm zirconia rotors spun at 20 kHz for ³¹P and ¹³³Cs experiments and at 22 kHz for ¹H spectroscopy. For ³¹P and ¹³³Cs spectra, 2-µs pulse widths were used without ¹H decoupling. To acquire ¹H spectra, a depth pulse sequence with an excitation pulse width of 5 µs and a train of two 180° pulses of 10-µs were used to remove the background signal. The repetition times of 10, 12, and 30 s, and 16, 32, and 4 scans were used for ¹H, ³¹P, and ¹³³Cs NMR acquisition, respectively. The chemical shifts for ¹H, ³¹P, and ¹³³Cs NMR spectroscopy were referenced to an ex-

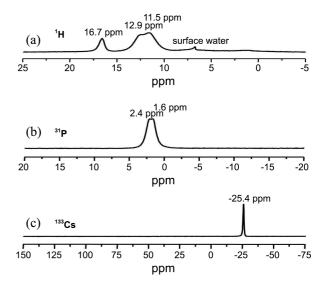
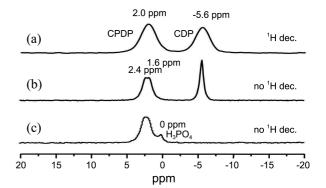


Figure 1. (a) $^1\text{H},$ (b) $^{31}\text{P},$ and (c) ^{133}Cs MAS NMR spectra of CsH_5(PO_4)_2.

3198 Bull. Korean Chem. Soc. 2013, Vol. 34, No. 11

Table 1. Chemical shifts of $^1\text{H},~^{31}\text{P},$ and ^{133}Cs NMR peaks of $CsH_5(PO_4)_2$ and CsH_2PO_4


Compound	¹ H	³¹ P	¹³³ Cs
	(ppm)	(ppm)	(ppm)
$CsH_5(PO_4)_2$	16.7, 12.9, 11.5	2.4, 1.6	-25.4^{b}
$CsH_2PO_4^a$	14.3, 10.9	-5.6	46.4 ^b

^afrom Reference 7. ^bChemical shift was corrected in this work.

ternal H_2O at 4.80 ppm, aqueous 85% H_3PO_4 at 0 ppm, and 1 M CsCl solution (Sigma Aldrich, USA) at 0 ppm, respectively.

Figure 1 shows the ¹H, ³¹P, and ¹³³Cs MAS NMR spectra of CPDP, and the chemical shifts of peaks are summarized in Table 1. Crystallographically, five H sites, two P sites and one Cs site exist in CPDP structures⁸ and strong hydrogen bonds in CPDP were observed to consist of 4 OHs with similar OH bond lengths, with the other OH having a shorter bond length.9 Since stronger hydrogen bonding results in larger ¹H chemical shifts, the peak at 16.7 ppm in the ¹H MAS NMR spectrum is assigned to the H with the shortest OH bond length (the stronger hydrogen bonding), and the rest of the peaks at 12.9 and 11.5 ppm are assigned to the other 4 Hs. The ¹H spectrum in Figure 1(a) also confirms that the 10.9-ppm peak in the ¹H MAS spectrum of the mixture of CPDP and CDP in our previous report⁷ was not from the CPDP. The two peaks with 1:1 peak areas in the ³¹P MAS NMR spectrum in Figure 1(b) and the single peak in the ¹³³Cs MAS NMR spectrum in Figure 1(c) correspond to the two P sites and the single Cs site in the CPDP, respectively. The comparison of the ³¹P MAS NMR spectra of the mixture of CPDP and CDP in Figures 2(a) and 2(b) clearly indicates that continuous wave ¹H decoupling broadened the line widths of the signals of both compounds. This line broadening is due to the interference of ¹H decoupling and molecular motions/sample spinning at similar frequencies.¹⁰ These results suggest that ³¹P MAS NMR experiments for solid acids are more advantageous without ¹H decoupling, especially at fast spinning rates over a few tens of kHz.

Even when the powder XRD patterns had CPDP signals only, the H₃PO₄ remaining in the CPDP was easily observed by ³¹P MAS NMR spectroscopy as the signal near 0 ppm, as sown in Figure 2(c). This H₃PO₄ cannot be easily detected by XRD, but ³¹P MAS NMR spectroscopy is useful to investigate the purity of the synthesized CPDP. In addition, much longer ³¹P T₁ relaxation times of the solid acids than those of liquid H₃PO₄ allow for the detection of even small amounts of H₃PO₄ in CPDP with short pulse repetition delay times. When the amount of H₃PO₄ was less used than the stoichiometry for CPDP synthesis, a mixture of CDP and CPDP was produced. However, too much H₃PO₄ left excess H₃PO₄ in the CPDP product. Collecting pure CPDP from the mixtures is very difficult. Therefore, it is crucial to match the amounts of reagents precisely. The inaccurate ¹³³Cs chemical shifts previously reported due to the misread concentration

Figure 2. ³¹P MAS NMR spectra of the mixture of $CsH_3(PO_4)_2$ and CsH_2PO_4 (a) under ¹H continuous wave decoupling condition, (b) without ¹H decoupling, and of (c) the mixture of $CsH_3(PO_4)_2$ and H_3PO_4 without ¹H decoupling.

of a reference CsCl solution⁷ are corrected by adding 25.3 ppm to the previous chemical shifts. The ¹³³Cs chemical shift is found to be extremely sensitive to the concentration of Cs⁺ ions in the solution.

In summary, ¹H, ³¹P, and ¹³³Cs MAS NMR spectra of *pure* CPDP have been presented and interpreted for the first time, and MAS MMR spectroscopy has been demonstrated to be more advantageous than XRD techniques to confirm the purity of CPDP, especially when liquid impurities such as H₃PO₄ are present. These NMR results will contribute to the better understanding of the behavior of protons in CPDP electrolytes.

Acknowledgments. This work was supported by the Korea Basic Science Institute through the grants of K3018 and T33419.

References

- Haile, S. M.; Boysen, D. A.; Chisholm, C. R. I.; Merle, R. B. Nature 2001, 410, 910.
- (a) Boysen, D. A.; Uda, T.; Chisholm, C. R. I.; Haile, S. M. Science 2004, 303, 68. (b) Otomo, J.; Minagawa, N.; Wen, C.-J.; Eguchi, K.; Takahashi, H. Solid State Ionics 2003, 156, 357.
- Matsui, T.; Kukino, T.; Kikuchi, R.; Eguchi, K. Electrochem. Solid-State Lett. 2005, 8(5), A256.
- 4. Boysen, D. A.; Haile, S. M. Chem. Mater. 2003, 15, 727.
- Yamada, K.; Sagara, T.; Yamane, Y.; Ohki, H.; Okuda, T. Solid State Ionics 2004, 175, 557.
- Gradišek, A.; Dimnik, B.; Vrtnik, S.; Wencka, M.; Zdanowska Fraczek, M.; Lavrova, G. V.; Dolinšek, J. J. Phys. Condens. Matter: 2011, 23(8), 085901.
- Chae, S. A.; Lee, Y. E.; Han, O. H.; Lee, S. G. Chin. J. Magn. Reson. 2010, 27, 436.
- Efremov, V. A.; Trunov, B. K.; Macichek, I.; Gudinitsa, E. N.; Fakeev, A. A. *Russ. J. Inorg. Chem.* **1981**, *26*, 3213.
- Lavrova, G. V.; Burgina, E. B.; Matvienko, A. A.; Ponomareva, V. G. Solid State Ionics 2006, 177, 1117.
- Ernst, M.; Zimmermann, H.; Meier, B. H. Chem. Phys. Lett. 2000, 317, 581 and references therein.