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We present an elementary pedagogical derivation of the Brillouin-Wigner and the Rayleigh-Schrödinger

perturbation theories with Epstein-Nesbet partitioning. A variant of the Brillouin-Wigner perturbation theory

is also introduced, which can be easily extended to the quasi-degenerate case. A main advantage of the new

theory is that the computing time required for obtaining the successive higher-order results is minimal after the

third-order calculation. We illustrate the accuracy of the new perturbation theory for some simple model

systems like the perturbed harmonic oscillator and the particle in a box.
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Introduction

One of the most useful approximation methods in quan-

tum mechanics is the perturbation theory.1 There are many

variations of the perturbation theory for dealing with station-

ary bound systems. Of these, the Rayleigh-Schrödinger per-

turbation theory (RSPT) and the Brillouin-Wigner pertur-

bation theory (BWPT) are the most fundamental and general

ones.2,3 Some theories may give more accurate results but

their applicability is limited to specific systems. In this paper,

we present an elementary derivation of BWPT and RSPT

with Epstein-Nesbet (EN) partitioning,4,5 and introduce a

new variant of the BWPT. A major advantage of the new

perturbation theory is that the computing time required for

obtaining the successive higher-order results beyond the

third-order calculation is negligible compared to that requir-

ed for the calculations of the second and the third order

results. For simple model systems like the perturbed harmonic

oscillator and the particle in a box, it is shown that the

ground-state energies calculated from the new perturbation

theory have comparable accuracy as those calculated up to

the same order by BWPT and RSPT with EN partitioning.

Nondegenerate Perturbation Theory

Let us consider a system with the Hamiltonian given by H

= H0 + λV. The unperturbed energies and the state vectors

are denoted by  and , respectively. We assume that

the zeroth-order states constitute a complete and ortho-

normal basis. Then the perturbed state vector of the nth state

of interest can be represented as

, (1)

where  and , and the Schrödinger

equation for the perturbed Hamiltonian can be represented

as a matrix equation, 

for all l. (2)

The Hamiltonian matrix element can be written as 

(3)

with . In the EN partitioning, the full

Hamiltonian matrix is partitioned as

with  and

. (4)

By substituting Eq. (4) into Eq. (2), we obtain

for all l (5)

Consider first the simpler case in which the energy of

interest, En, is well separated from  for all l other than n.

For l = n, Eq. (5) gives

(6)

On the other hand, for  Eq. (5) gives

(7)

Note that Eqs. (6) and (7) are exact relations. In the RSPT, it

is assumed that the energy and the state vector of the perturbed

system are analytic functions, so that they can be represented

as MacLaurin series in λ. In Eq. (7), no such assumption is

made, but it involves the unknown quantity En.

By iteration, Eq. (7) gives the following perturbation

series expression for  in the BWPT with EN partitioning:

(8)
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By substituting this expression for  into Eq. (6), we

obtain the perturbation series expression for energy in

BWPT with EN partitioning: 

+L (9)

The kth-order energy of the BWPT is given by truncating the

series in Eq. (9) after the λk term. The resulting equation is

solved for En to give the kth-order energy ; in this

paper  denotes an approximate energy that is correct

up to O(λk), not the kth-order correction. A more approxi-

mate procedure to evaluate  is just to put the value

 for En in the truncated series on the right hand side.

The RSPT with EN partitioning can be easily derived from

Eqs. (6) and (8). The first-order approximation to  in

BWPT can be written as

(10)

From Eqs. (6) and (10), we then obtain the first-order

approximation to  and the second-order approximation to

En in RSPT with EN partitioning as

; (11)

;

. (12)

Similarly, with the relation , we

can write

; (13)

;

. (14)

We may continue this procedure to get the higher-order

approximations in RSPT. For easy reference, we will give

the next order approximations:

  ; (15)

;

. (16)

We now propose a new iterative procedure for solving

Eqs. (6) and (7) for successive approximations to the energy

and the state vector: 

for (17)

(18)

When En is nondegenerate, we can take  for ,

and the first-order approximation for energy is .

Note again that in this paper the superscript (k) denotes a

quantity that is correct up to O(λk), not the kth-order

correction. The first-order approximation for  for 

and the second-order expression for En are given by

(19)

(20)

These expressions coincide with those of the RSPT in Eqs.

(11) and (12). With Eqs. (19) and (20) it is straightforward to

calculate the higher order quantities by using the recursive

relations in Eqs. (17) and (18). One can see easily that in this

new perturbation method all the matrix elements of the

perturbation Hamiltonian are calculated at the level of third-

order energy calculation, so that the computing time requir-

ed for obtaining the successive higher-order results beyond

the third-order calculation is minimal.

Quasi-Degenerate Perturbation Theory

The applicability of the nondegenerate perturbation theory

is limited to the case where 

, (21)

for all states . We now consider the case in which

several states with the same symmetry as the nth state have

similar energies at the level of the first-order energies; that

is, . For notational convenience, we let

the nth state of interest be one of the d states. These d states
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must include all states for which the condition (21) is not

satisfied. The secular equation to solve reads as

(22)

In the case under consideration, we expect that 

and  for j = 1, …, d, and  and

 for l = d + 1, d + 2, …. Hence, if we neglect the

terms of O(λ2), the equations in (22) are divided to two

groups:

, (23)

(l = d + 1, d + 2, …)(24)

The secular Eq. (23) gives d correct zeroth-order states and

their first-order energies:

 and , (25)

where we will assume that  is orthonormalized. The

nth state of interest, , corresponds to the correct zeroth-

order state , for which the expansion coefficient 

has the larger absolute value than other expansion coefficients.

We now take the correct zeroth-order states   as

the zeroth-order states instead of  for j = 1,..., d. To

avoid confusion, we will denote the first d states by the

index i, j, or n, and the later states by the index l or m, and

introduce the following notations:

. (26)

Since, , ,

and , the secular Eq. (22)

becomes

(27)

From Eq. (27), we obtain

, (28)

(29)

(30)

Note that these are the exact relations. In fact, the set of

these three equations are equivalent to Eqs. (6) and (7),

except that there is no direct mixing between the first d

states. From Eqs. (28)-(30), we can generate successive

approximations to the energy and the state vector by

iteration with , and :
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(33)

In particular, the first-order approximation for for

 and the second-order expression for En

are given by

, (34)

(35)

The second-order energy expression in Eq. (35) coincide

with that of the multireference perturbation theory of Chen,

Davidson, and Iwata6 [Eq. (20) of Ref. 6 truncated at the

second order]. Multireference perturbation theories based on

the RSPT and the BWPT with various partitioning of the

Hamiltonian matrix have been widely used in molecular

electronic problems.3,5,7-10 We will show below that Eq. (35)

provides quite accurate results by including just a few

nearby states in constructing the correct zeroth-order states.

Numerical Results

We now check the accuracy of the higher-order results of

the present perturbation theory against those of the BWPT

and the RSPT with and without EN partitioning. The first

example is a perturbed harmonic oscillator:
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Although this example must be trivial, it serves well to

illustrate the quality of the approximations. The exact energy

is given by . In Figure 1(a) we

display the relative errors in the ground-state energies 

calculated from Eq. (18). We set the values of , μ and ω to

unity. For clarity’s sake, we give only the even order results

up to . In fact,  is slightly worse than ,

though better than . Numerical results up to k = 20

and λ = 50 show that  and  converge to the

exact values as we go to the higher order; these two states

are the lowest energy states having the even and the odd

parity, respectively. However, as the quantum number n

increases, the radius of convergence appears to decrease. 

Figures 1(b) and 1(c) display the corresponding results

calculated from the RSPT and the BWPT with EN partition-

ing, respectively. We see that both perturbation theories also

provide convergent results. For this model system, the RSPT

gives more accurate results than the BWPT, and the results

calculated from our perturbation theory lie between those

from the two theories. On the other hand, as shown in Figure

1(d), the RSPT and the BWPT without EN partitioning give

divergent results even for very small λ. 

In Figure 1(a), we also compare the results of Eq. (35)

(drawn as the black dashed curve), which utilizes the correct

zeroth-order states, with those obtained from Eq. (18). To

calculate the ground state energy, we just mix the  and

 states to obtain  and  states. Even with this

small tweaking, the resulting second-order energy is almost

as good as the straightforward fourth-order energy obtained

from Eq. (18). 

Figure 2 displays the results for a modified particle in a

box with infinite walls at x = −L/2 and x = L/2. Inside the

box, the potential energy is given by V(x) = λcos(πx/L). An

interesting feature of this system is that when λ has a large

positive value, V(x) becomes a deep double-well potential

and the ground state and the first excited state become

almost degenerate, and the energy difference between the

ground state and the second excited state gets small. See

Figure 2(a) for the variation of numerically calculated

energy levels as a function of λ; in the calculation, the values

of , μ and L were set to unity. Hence the second-order

energy calculated from Eq. (18) may become inaccurate for

En
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Figure 1. Relative errors in the ground-state energies of the
harmonically perturbed oscillator [Eq. (36)] calculated from the
various perturbation theories as a function of the perturbation
parameter λ. Figures 1(a), 1(b), and 1(c) display the results of the
present, RS, and BW perturbation theories with EN partitioning,
while Fig. 1(d) shows the results of the RS and BW perturbation
theories without EN partitioning.

Figure 2. (a) Variation of the numerical  values for a
modified particle in a box with V(x) = λ cos(πx/L). (b)-(e) Com-
parison of the relative errors in the ground-state energies calcu-
lated from various perturbation theories. Figures 2(b), 2(c), and
2(d) display the results of the present, RS, and BW perturbation
theories with EN partitioning, while Figure 2(e) shows the results
of the RS and BW perturbation theories without EN partitioning.

E
n

exact

λ( )
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large positive λ values, as shown in Figure 2(b). In com-

parison,  calculated from Eq. (35) is as accurate as the

fourth-order energy calculated from Eq. (18) for the whole

range of λ considered; in applying Eq. (35)  and 

states are mixed to obtain  and . Note that the

downward spikes near λ = 0 result from the fact that the

ground-state energy becomes zero when λ has a small

negative value.

Figures 2(c) and 2(d) display the corresponding results

calculated from the RSPT and the BWPT with EN partition-

ing, respectively. For this model system, the results of our

perturbation theory and the BWPT show better convergence

behavior than those of the RSPT with EN partitioning.

Again, as shown in Figure 2(e), the RSPT and the BWPT

without EN partitioning give much less accurate results;

note that the ordinate scale in Figure 2(e) is different from

those of Figure 2(b), 2(c), and 2(d).

Conclusion

We have shown that various perturbation theories with EN

partitioning can be derived in a quite elementary manner. In

particular, we proposed a variant of the BWPT, which can be

easily extended to the quasi-degenerate case. While the

usual BWPT requires rapidly increasing computing time to

get the higher-order results, the new perturbation theory

requires negligible computing time to get the successive

higher-order results beyond the third-order calculation. At

least for the two simple model systems considered, the new

perturbation theory appears to give as accurate results as the

BWPT and the RSPT with EN partitioning. The new variant

BWPT would carry the similar advantages and disadvantages

of the usual BWPT in comparison with the RSPT.3 In parti-

cular, it does not satisfy the size-consistency requirement, so

that it might have a limited usability in molecular electronic

problems.
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