Synthesis of Poly-Substituted Benzene Derivatives via [3+3] Annulation Protocol from Morita-Baylis-Hillman Adducts and Glutaconates

Jin Woo Lim, Se Hee Kim, Jin Yu, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received August 14, 2013, Accepted August 30, 2013

Key Words : Poly-substituted benzenes, [3+3] Annulation, Morita-Baylis-Hillman adducts, Glutaconates

Morita-Baylis-Hillman (MBH) adducts ${ }^{1}$ have been used for the synthesis of various aromatic compounds including poly-substituted benzenes ${ }^{2}$ and phenols. ${ }^{3}$ The reaction of MBH adduct and 1,3-dimethylacetone dicarboxylate has been used for the synthesis of poly-substituted phenols bearing 2,6-dicarboxylates via the [3+3] annulation protocol (vide infra, Scheme 1). ${ }^{3 \mathrm{a}}$ 1,3-Dimethylacetone dicarboxylate served a three-carbon unit with 1,3-dicarboxylates and 2keto functionality in the reaction. The corresponding polysubstituted benzene 3a has been synthesized in low yield $(23 \%)^{2 a}$ by DBU-mediated dehydrogenation of the cyclohexene intermediate which was prepared from MBH adduct and diethyl malonate (vide infra, Scheme 1). ${ }^{4}$
Glutaconates have been used in organic synthesis in order to introduce a three-carbon unit bearing two carboxylates at the 1,3 -position. ${ }^{5,6}$ In these respects, we presumed that the
reaction of MBH adduct and diethyl glutaconate could be used for the preparation of poly-substituted benzene derivatives bearing 1,3-dicarboxylates such as 3a, as shown in Scheme 1.

At the outset of our experiment, the reaction of MBH bromide 1a and diethyl glutaconate (2a) was examined in $\mathrm{CH}_{3} \mathrm{CN}$ in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ at $50{ }^{\circ} \mathrm{C}$ for 2 h . To our delight, desired product 3a was obtained in moderate yield (61%). ${ }^{7}$ The nucleophilic substitution of $\mathbf{1 a}$ with the anion of 2a would produce a resonance-stabilized carbanion intermediate $\mathbf{I},{ }^{8}$ and the following cyclization, dehydration and a base-catalyzed 1,3-H shift produced 3a via an overall [3+3] annulation approach, as shown in Scheme 2. The reaction in refluxing $\mathrm{CH}_{3} \mathrm{CN}$ gave a similar yield of 3a (60\%). After some trials, we found that the reaction in DMF at $90^{\circ} \mathrm{C}$ produced 3a in good yield (72\%) in short time (1 h), and we

Scheme 2

Table 1. Synthesis of poly-substituted benzene derivatives
Entres (72)
${ }^{a}$ Conditions: MBH bromide $\mathbf{1}(1.0 \mathrm{mmol})$, diethyl glutaconate (2a, 1.1 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv), DMF, $90^{\circ} \mathrm{C}, 1 \mathrm{~h} .{ }^{b}$ Dimethyl glutaconate (2b) was used. ${ }^{\circ}$ Reaction time was 48 h .
selected this condition as an optimum one.
Encouraged by the successful result, we examined the
reactions of various MBH bromides $\mathbf{1 b} \mathbf{- h}$ under the optimized conditions (DMF, $90^{\circ} \mathrm{C}, 1 \mathrm{~h}$), and the results are summarized in Table 1. The reaction of 1a and dimethyl glutaconate (2b) afforded 3b in a similar yield (70%, entry 2). The reactions of MBH bromides 1b-f (entries 3-7) afforded the corresponding poly-substituted benzenes $\mathbf{3 c} \mathbf{c}$ g in good to moderate yields ($53-76 \%$). The MBH bromide $\mathbf{1 g}$, derived from ethyl vinyl ketone, gave $\mathbf{3 h}$ in a similar yield (69%, entry 8). The benzoyl derivative $\mathbf{1 h}$, derived from phenyl vinyl ketone, gave the biphenyl derivative $\mathbf{3 i}$ in moderate yield (48%); however a long reaction time (48 h) was required (entry 9) presumably due to the steric hindrance during the cyclization.

The reaction of $\mathbf{1 a}$ and triethyl aconitate ($\mathbf{2 c}$), bearing an ester moiety at the 3-position, afforded $\mathbf{3 a}$ (61%) unexpectedly instead of a desired product 3j, as shown in Scheme 3. When we monitored the reaction of $\mathbf{1 a}$ and $\mathbf{2 c}$ on TLC both components disappeared rapidly to form somewhat polar compounds, presumably a stereo- and/or regioisomeric mixture of II. The polar components slowly converted to 3a. In order to check the possibility for the conversion of $\mathbf{2 c}$ into $\mathbf{2 a}$ by a selective removal of the ester moiety at the 3-position, we examined the reaction of $\mathbf{2 c}$. However, $\mathbf{2 c}$ was not converted to 2 a under the same reaction conditions. Thus, the mechanism for the formation of $\mathbf{3 a}$ could be tentatively proposed as follows: (i) conjugate addition of water in the reaction mixture to $\mathbf{I I}$ to form a β-hydroxy ester III, ${ }^{9 \text { a-c }}$ formation of b-lactone IV, decarboxylation to form $\mathbf{I},{ }^{9 \mathrm{de},}{ }^{\text {a }}$ and the final cyclization to $\mathbf{3 a}$. However, further studies are required in order to understand the mechanism more precisely.

As a last examination, the reaction of $\mathbf{2 a}$ and the DABCO salt of 1a was examined, as shown in Scheme 4. The corresponding DABCO salt \mathbf{V} was formed quantitatively in DMF at room temperature; ${ }^{10}$ however, the reaction with $\mathbf{2 a}$ afforded benzene derivative 4a in moderate yield (42\%) via the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ type reaction of 2a to form an intermediate VI and a following cyclization process. In the reaction, compound 3a (9%) was also formed via the competitive $\mathrm{S}_{\mathrm{N}} 2$ reaction of $\mathbf{2 a}$ to form an intermediate \mathbf{I} and a following cyclization process.
In summary, various poly-substituted benzene derivatives bearing 1,3-dicarboxylates have been synthesized via an efficient [3+3] annulation protocol from Morita-BaylisHillman bromides and glutaconate derivatives.

Scheme 4

Experimental Section

The starting materials MBH bromides were prepared according to the reported method from MBH adducts with aqueous HBr or $\mathrm{PBr}_{3}{ }^{11}$ Glutaconate derivatives 2a (E) and $\mathbf{2 b}(E)$ were prepared by esterification of commercial transglutaconic acid. Triethyl aconitate (2c, E) was prepared by esterification of commercial trans-aconitic acid. ${ }^{12}$

Typical Synthetic Procedure of 3a. A stirred solution of 1a ($239 \mathrm{mg}, 1.0 \mathrm{mmol}$), 2a ($205 \mathrm{mg}, 1.1 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(489 \mathrm{mg}, 1.5 \mathrm{mmol})$ in DMF (3.0 mL) was heated to $90^{\circ} \mathrm{C}$ for 1 h . After the usual aqueous extractive workup and column chromatographic purification process (hexane/ether, $10: 1$), compound $\mathbf{3 a}^{2 \mathrm{a}}$ was obtained as colorless oil, 235 mg (72%). Other compounds were synthesized similarly, and the spectroscopic data of $\mathbf{3 b} \mathbf{- i}$ and $\mathbf{4 a}$ are as follows.

Compound 3b: 70\%; white solid, mp 52-54 ${ }^{\circ} \mathrm{C}$; IR (KBr) $1719,1434,1322,1233 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $2.39(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 6.98-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.90(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $16.98,39.78,52.16,52.18,126.27,127.43,128.41,128.54$, 129.62, 131.87, 134.11, 139.14, 140.77, 143.37, 166.37, 168.09; ESIMS m/z $299[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$: C, 72.47; H, 6.08. Found: C, 72.69; H, 6.31.
Compound 3c: 76\%; colorless oil, IR (film) 1720, 1318, $1228 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.25(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 4.24(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}) 6.77(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.50(\mathrm{~m}, 2 \mathrm{H})$, 7.67 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.21,14.28,16.89,36.42,61.04$, $61.27,123.23,125.53,125.72,125.79,126.19,127.19$, $128.00,128.82,129.43,131.81,132.32,133.72,133.97$, 134.96, 140.11, 143.02, 165.92, 167.96; ESIMS m/z 377 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 76.57; H, 6.43. Found: C, 76.45; H, 6.68.

Compound 3d: 71\%; colorless oil, IR (film) 1720, 1368, $1228 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.39(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H})$, $4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{dd}, J$ $=8.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 1 \mathrm{H})$, $7.76(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.81(\mathrm{~m}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 14.26,14.30,17.04,40.01,61.13,61.23,125.48$, 126.07, 126.63, 126.95, 127.52, 127.57, 127.91, 128.19, $129.48,132.09,132.53,133.49,134.08,136.80,140.41$, 143.02, 165.99, 167.91; ESIMS m/z 377 [M+H] ${ }^{+}$.

Compound 3e: 66\%; colorless oil, IR (film) 1720, 1316,
$1228 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.33(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.63(\mathrm{~m}$, $2 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.21$ (dd, $J=15.9$ and $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=15.9$ and 2.4 Hz , $1 \mathrm{H}), 7.09-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.92(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ (d, $J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.28,14.32$, $16.75,37.20,61.12,61.23,126.10,127.27,127.32,127.91$, 128.49, 129.27, 131.53, 132.30, 133.26, 137.11, 140.09, 142.54, 166.01, 167.95; ESIMS m/z $353[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4}$: C, 74.98; H, 6.86. Found: C, 75.12; H, 6.93.

Compound 3f: 69\%; colorless oil, IR (film) 1721, 1303, $1229,1177 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.39(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}$, $2 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.89$ (dd, $J=3.3$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.3$ and 1.8 Hz , $1 \mathrm{H}), 7.32$ (dd, $J=1.8$ and $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $14.25,14.27,16.69,32.70,61.11,61.23,106.56,110.30$, 127.91, 129.64, 132.34, 133.58, 138.16, 141.58, 142.68, 152.90, 165.84, 167.79; ESIMS m/z 317 [M+H] ${ }^{+}$.

Compound 3g: 53\%; colorless oil, IR (film) 2957, 2930, $1722,1315,1226 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.90$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.40(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.65(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{~s}$, $3 \mathrm{H}), 2.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{x} 2 \mathrm{H})$, $7.92(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.04,14.27,14.32,16.50,22.57,29.25$, $30.20,31.63,33.79,61.02,61.13,127.56,128.55,132.08$, 132.73, 141.85, 142.90, 166.18, 168.15; ESIMS m/z 321 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$: C, 71.22; H, 8.81. Found: C, 71.47; H, 8.79.

Compound 3h: 69\%; colorless oil, IR (film) 1721, 1317, $1228 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.04(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $2.86(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.31(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.23$ (m, 3H), $7.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.24,14.30,15.01,23.37$, 38.77, 61.09, 61.24, 126.28, 127.98, 128.47, 128.52, 129.67, $132.10,134.57,139.90,139.91,148.50,165.95,167.91$; ESIMS m/z $341[\mathrm{M}+\mathrm{H}]^{+}$.

Compound 3i: 48\%; pale yellow oil, IR (film) 1722, $1368,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.92$, $(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{q}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 2H), 7.00-7.07 (m, 2H), 7.13 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 8.04(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.59,14.31,38.60,61.08$, $61.35,127.48,127.91,128.34,128.57,128.65,129.75$, $129.95,131.86,133.32,133.60,138.54,138.63,140.04$,
145.83, 165.66, 167.74; ESIMS m/z $423[\mathrm{M}+\mathrm{H}]^{+}, 425$ $[\mathrm{M}+\mathrm{H}+2]^{+}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ClO}_{4}$: C, 71.00; H, 5.48. Found: C, 71.13; H, 5.71.
Compound 4a: 42\%; colorless oil, IR (film) 1721, 1310, $1233,1176 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.92(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{~s}$, $3 \mathrm{H}), 3.96(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-$ $7.15(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.43(\mathrm{~m}, 3 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.59,14.29,17.64,17.67,60.75,61.15$, 127.01, 127.89, 128.15, 128.59, 129.54, 130.63, 137.38, 140.56, 141.13, 144.33, 167.96, 168.02; ESIMS m/z 327 $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}: \mathrm{C}, 73.60 ; \mathrm{H}, 6.79$. Found: C, 73.75; H, 6.92.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3000541). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the general reviews on MBH reaction, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (b) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 45114574. (d) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. (e) Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley \& Sons: New York, 1997; Vol. 51, pp 201-350. (f) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. (g) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. (h) Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. (i) Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita-Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
2. For the synthesis of poly-substituted benzenes from MBH adducts, see: (a) Kim, S. C.; Lee, K. Y.; Lee, H. S.; Kim, J. N. Tetrahedron 2008, 64, 103-109. (b) Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2007, 48, 1633-1636. (c) Lim, C. H.; Kim, S. H.; Park, K. H.; Lee, J.; Kim, J. N. Tetrahedron Lett. 2013, 54, 387-391. (d) Lim, C. H.; Kim, S. H.; Kim, K. H.; Kim, J. N. Tetrahedron Lett. 2013, 54, 2476-2479 and further references cited therein.
3. For the synthesis of poly-substituted phenols from MBH adducts, see: (a) Park, D. Y.; Kim, S. J.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 6315-6319. (b) Kim, S. C.; Lee, H. S.; Lee, Y. J.; Kim, J. N. Tetrahedron Lett. 2006, 47, 5681-5685. (c) Kim, S. J.; Kim, S. H.; Kim, K. H.; Kim, J. N. Bull. Korean Chem. Soc. 2008, 29, 876-878.
4. Lee, M. J.; Park, D. Y.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett.

2006, 47, 1833-1837.
5. For the synthetic applications of dialkyl glutaconates as threecarbon unit, see: (a) Diallo, A.; Zhao, Y.-L.; Wang, H.; Li, S.-S.; Ren, C.-Q.; Liu, Q. Org. Lett. 2012, 14, 5776-5779. (b) Rieck, J. A.; Grunwell, J. R. J. Org. Chem. 1980, 45, 3512-3513. (c) Jackson, D. A.; Lacy, P. H.; Smith, D. C. C. J. Chem. Soc., Perkin Trans 1 1989, 215-220.
6. For the other synthetic applications of dialkyl glutaconates as four-carbon unit, see: (a) Nandaluru, P. R.; Bodwell, G. J. Org. Lett. 2012, 14, 310-313. (b) Nandaluru, P. R.; Dongare, P.; Kraml, C. M.; Pascal, R. A., Jr.; Dawe, L. N.; Thompson, D. W.; Bodwell, G. J. Chem. Commun. 2012, 48, 7747-7749. (c) Schwerdtfeger, A. E.; Chan, T. H. J. Org. Chem. 1993, 58, 6513-6516.
7. The reaction of $\mathbf{2 a}$ and MBH acetate $\left(\mathrm{CH}_{3} \mathrm{CN}, 50^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$ instead of 1a gave a similar yield of 3a (56\%); however, the formation of rearranged MBH acetate made the separation of 3a somewhat tedious.
8. The proton at the α-position of ester would be more acidic than the proton of an acetyl group due to delocalization of the anion by two ester groups, thus the carbanion intermediates I could be generated readily, as depicted in Scheme 2.
9. For the hydration of similar substrates, see: (a) Yamazaki, S.; Ohmitsu, K.; Ohi, K.; Otsubo, T.; Moriyama, K. Org. Lett. 2005, 7, 759-762. (b) Morikawa, S.; Yamazaki, S.; Furusaki, Y.; Amano, N.; Zenke, K.; Katiuchi, K. J. Org. Chem. 2006, 71, 3540-3544. (c) Jia, Y.; Tomita, T.; Yamauchi, K.; Nishiyama, M.; Palmer, D. R. J. Biochem. J. 2006, 396, 479-485. For the formation of β lactone and a following decarboxylation, see: (d) Mulzer, J.; Pointner, A.; Chucholowski, A.; Bruntrup, G. J. Chem. Soc., Chem. Commun. 1979, 52-54. (e) Shindo, M.; Matsumoto, K.; Shishido, K. Chem. Commun. 2005, 2477-2479.
10. For the introduction of a nucleophile at the secondary position of MBH adducts via the corresponding DABCO salts, see: (a) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023-9026. (b) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173-175. (c) Gong, J. H.; Kim, H. R.; Ryu, E. K.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 789-790. (d) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365-1371. (e) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int. Ed. 2009, 48, 5737-5740.
11. For the preparation of MBH bromides, see: (a) Das, B.; Damodar, K.; Bhunia, N.; Shashikanth, B. Tetrahedron Lett. 2009, 50, 20722074. (b) Basavaiah, D.; Reddy, K. R.; Kumaragurubaran, N. Nat. Protoc. 2007, 2, 2665-2676. (c) Das, B.; Banerjee, J.; Ravindranath, N. Tetrahedron 2004, 60, 8357-8361. (d) Gowrisankar, S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 726-728 and further references cited therein. (e) Ferreira, M.; Fernandes, L.; Sa, M. M. J. Braz. Chem. Soc. 2009, 20, 564-568. (f) Fernandes, L.; Bortoluzzi, A. J.; Sa, M. M. Tetrahedron 2004, 60, 9983-9989. (g) Basavaiah, D.; Hyma, R. S.; Padmaja, K.; Krishnamacharyulu, M. Tetrahedron 1999, 55, 6971-6976. (h) Yadav, J. S.; Reddy, B. V. S.; Madan, C. New J. Chem. 2001, 25, 1114-1117.
12. Kvita, V. Helv. Chim. Acta 1990, 73, 411-416.

