DOI QR코드

DOI QR Code

전 병렬구조 기반 8.1 Gbps 고속 및 다중 모드 QC-LDPC 복호기

8.1 Gbps High-Throughput and Multi-Mode QC-LDPC Decoder based on Fully Parallel Structure

  • 정용민 (연세대학교 전기전자공학과) ;
  • 정윤호 (한국항공대학교 항공전자공학과) ;
  • 이성주 (세종대학교 정보통신공학과) ;
  • 김재석 (연세대학교 전기전자공학과)
  • Jung, Yongmin (School of Electrical and Electronic Engineering, Yonsei University) ;
  • Jung, Yunho (School of Electronics, Telecommunication & Computer Engineering, Korea Aerospace University) ;
  • Lee, Seongjoo (Department of Information and Communication Engineering, Sejong University) ;
  • Kim, Jaeseok (School of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2013.07.26
  • 발행 : 2013.11.25

초록

본 논문은 전 병렬구조를 기반으로 고속으로 동작하며 다중 모드를 지원하는 quasi-cyclic (QC) low-density parity-check(LDPC) 복호기를 제안한다. 제안하는 QC-LDPC 복호기는 고속 throughput을 지원하기 위하여 전 병렬구조를 기반으로 설계되었다. 전 병렬구조를 사용함에 따라 발생하는 인터커넥션의 복잡도 문제는 broadcasting 기반의 sum-product 알고리즘의 사용과 저복잡도 순환 쉬프트 네트워크를 제안함으로써 해결하였다. 또한, 전 병렬구조에서 체크 노드 프로세서와 변수 노드 프로세서의 사용량이 많아 발생하는 복잡도 문제를 제안하는 결합된 체크 및 변수 노드 프로세서를 통하여 해결하였다. 제안하는 QC-LDPC 복호기는 라우팅 방식의 인터커넥션 네트워크, 다중 모드를 지원하는 결합된 체크 및 변수 노드 프로세서와 순환 쉬프트 네트워크를 통하여 다중 모드를 지원할 수 있다. 제안하는 QC-LDPC decoder는 100 MHz 클락 주파수로 동작하며, 다중 모드를 지원하고 (1944, 1620) QC-LDPC 부호에 대해서 8.1 Gbps의 throughput을 지원한다.

This paper proposes a high-throughput and multi-mode quasi-cyclic (QC) low-density parity-check (LDPC) decoder based on a fully parallel structure. The proposed QC-LDPC decoder employs the fully parallel structure to provide very high throughput. The high interconnection complexity, which is the general problem in the fully parallel structure, is solved by using a broadcasting-based sum-product algorithm and proposing a low-complexity cyclic shift network. The high complexity problem, which is caused by using a large amount of check node processors and variable node processors, is solved by proposing a combined check and variable node processor (CCVP). The proposed QC-LDPC decoder can support the multi-mode decoding by proposing a routing-based interconnection network, the flexible CCVP and the flexible cyclic shift network. The proposed QC-LDPC decoder is operated at 100 MHz clock frequency. The proposed QC-LDPC decoder supports multi-mode decoding and provides 8.1 Gbps throughput for a (1944, 1620) QC-LDPC code.

키워드

참고문헌

  1. G. R. Gallager, "Low-density parity-check codes," MA, M.I.T. Press, 1963.
  2. M. P. C. Fossorier, "Quasi-cyclic low density parity check codes from circulant permutation matrices," IEEE Trans. Inform. Theory, Vol. 50, no. 8, pp. 1788-1794, Oct. 2006.
  3. IEEE 802.11acTM/D2.0, "Draft standard for information technology part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, amendment 4: enhancements for very high throughput for operation in bands below 6GHz," Jan. 2012.
  4. IEEE Std. 802.16eTM-2005, "IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems," Feb. 2006.
  5. IEEE Std. P802.15.3c, "Part 15.3: wireless medium access control (MAC) and physical layer (PHY) specifications for high rate wireless personal area networks (WPANs)," Dec. 2009.
  6. M. Yang, W. E. Ryan, and Y. Li, "Design of efficiently encodable moderate-length high-rate irregular LDPC codes," IEEE Trans. Commun., Vol. 52, no. 4, pp. 564-571, Apr. 2004. https://doi.org/10.1109/TCOMM.2004.826367
  7. Y. Jung, Y. Jung, and J. Kim, "Memory-efficient and high-speed LDPC encoder," Electron. Lett., Vol. 46, no. 14, pp. 1035-1036, Jul. 2010. https://doi.org/10.1049/el.2010.1189
  8. Y. Jung, C. Chung, Y. Jung, and J. Kim, "7.7Gbps encoder design for IEEE 802.11n/ac QC-LDPC codes," in Proc. of International SoC Design Conference, pp. 215-218, Jeju, Korea, Nov. 2012.
  9. D. J. C. MacKay, "Good error-correcting codes based on very sparse matrices," IEEE Trans. Inform. Theory, Vol. 45, no. 2, pp. 399-431, Mar. 1999. https://doi.org/10.1109/18.748992
  10. M. P. C. Fossorier, M. Mihaljevic, and H. Imai, "Reduced complexity iterative decoding of low-density parity-check codes based on belief propagation," IEEE Trans. Commun., Vol. 47, no. 5, pp. 673-680, May. 1999. https://doi.org/10.1109/26.768759
  11. J. Chen, and M. P. C. Fossorier, "Density evolution for two improved BP-based decoding algorithm," IEEE Commun. Lett., Vol. 6, no. 5, pp. 208-210, May. 2002. https://doi.org/10.1109/4234.1001666
  12. J, Zhang, and M. P. C. Fossorier, "Shuffled iterative decoding," IEEE Trans. Commun., Vol. 53, no. 2, pp. 209-213, Feb. 2005. https://doi.org/10.1109/TCOMM.2004.841982
  13. M. M. Mansour, "A turbo-decoding message-passing algorithm for sparse parity-check matrix codes," IEEE Trans. Signal Processing, Vol. 54, no. 11, pp. 4376-4392, Nov. 2006. https://doi.org/10.1109/TSP.2006.880240
  14. A. J. Blanksby, and C. J. Howland, "A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder," IEEE J. Solid-State Circuits, Vol. 37, no. 3, pp. 404-412, Mar. 2002. https://doi.org/10.1109/4.987093
  15. A. Darabiha, A. C. Carusone, and F. R. Kschischang, "A 3.3-Gbps bit-serial block-interlaced min-sum LDPC decoder in 0.13-um CMOS," in Proc. IEEE CICC, pp. 459-462, San Jose, USA, Sep. 2007.
  16. A. Darabiha, A. C. Carusone, and F. R. Kschischang, "Block-interlaced LDPC decoders with reduced interconnect complexity," IEEE Trans. Circuits Syst. II: Express Briefs, Vol. 55, no. 1, pp. 74-78, Jan. 2008. https://doi.org/10.1109/TCSII.2007.905328
  17. J. Lee, and H. Ryu, "A 1-Gb/s flexible LDPC decoder supporting multiple code rates and block lengths," IEEE Trans. Consumer Electron., Vol. 54, no. 2, pp. 417-424, May. 2008. https://doi.org/10.1109/TCE.2008.4560109
  18. M. M. Mansour, and N. R. Shanbhag, "A 640-Mb/s 2048-bit programmable LDPC decoder chip," IEEE J. Solid-State Circuits, Vol. 41, no. 3, pp. 634-698, Mar. 2006.
  19. N. Chen, Y. Dai, and Z. Yan, "Partly parallel overlapped sum-product decoder architectures for quasi-cyclic LDPC codes," in Proc. IEEE SIPS, pp. 220-225, Benff, Canada, Oct. 2006.
  20. B. Xiang, D. Bao, S. Huang, and X. Zeng, "An 847-955 Mb/s 342-397 mW Dual-Path Fully-Overlapped QC-LDPC Decoder for WiMAX System in 0.13 um CMOS," IEEE J. Solid-State Circuits, Vol. 46, no. 6, pp. 1416-1432, Jun. 2011. https://doi.org/10.1109/JSSC.2011.2125030
  21. K. Shin, and H. Kim, "A Multi-mode LDPC Decoder for IEEE 802.16e Mobile WiMAX," Journal of Semiconductor Technology and Science, Vol. 12, no. 1. pp. 24-33, Mar. 2012.
  22. Y. Na, and K. Shin, "Multi-mode layered LDPC decoder for IEEE 802.11n," J. IEEK, vol. 48-SD, no. 11, pp. 18-26, Nov. 2011.
  23. J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits: A Design Perspective, Prentice Hall, pp. 125-129, 594-597, 2003.