DOI QR코드

DOI QR Code

Highly Sensitive and Selective Fluorescent Chemosensors Specific for Pd2+ Detection

Pd2+ 검출용 고감도 형광화학센서

  • Wang, Jing (School of Chemistry and Chemical Engineering, Guangxi University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Engineering, Pusan National University)
  • 왕정 (Guangxi University 화학 및 화학공학과) ;
  • 하창식 (부산대학교 고분자공학과)
  • Received : 2013.01.22
  • Accepted : 2013.03.11
  • Published : 2013.03.30

Abstract

Palladium plays a pivotal role in the production of dental and medicinal devices, medicinal substances, jewellery, automobile and high-performance adhesives. Despite the frequent and fruitful use of such reactions, one major setback is the high level of palladium in the resultant compounds which can harm the human body. Among the palladium species, $PdCl_2$ is the most toxic. As a consequence it is desirable to detect the $Pd^{2+}$ cations by fluorescence spectra because it can provide an operationally simple and cost-effective detection method together with high sensitivity and selectivity. Herein, an ${\alpha}$-carbonyl substituted pyrene derivative, ${\gamma}$-oxo-1-pyrenebutyric acid (OPBA), was demonstrated to be a highly sensitive and selective fluorescent probe for $Pd^{2+}$ among the metal cations examined in aqueous solutions.

팔라듐은 치과 및 의료용 기구, 의료용 재료, 보석 및 자동차, 고기능성 점 접착제 등을 생산하는데 중요한 역할을 한다. 팔라듐을 이용하는 반응에서의 중요성에도 불구하고 팔라듐은 최종생성물에 잔존할 경우 인체에 해로운 독성을 가지고 있다. 그 중에서도 특히 $PdCl_2$는 독성이 가장 크다. 따라서 $Pd^{2+}$ 이온 검출은 매우 중요한 연구과제인데 그 중에서도 특히 형광분석법은 가장 손쉽고 경제적이면서 감도가 높고 선택성이 높은 방법으로 알려져 있다. 본 연구에서는 알파-카보닐로 치환된 파이렌 유도체인 감마-옥소-1-파이렌부틸산(OPBA)이 수용액에 금속이온으로 감도가 크고 선택성이 우수한 것으로 밝혀졌다.

Keywords

References

  1. B. Valeur and I. Leray, Coord. Chem. Rev., 205, 3 (2000). https://doi.org/10.1016/S0010-8545(00)00246-0
  2. V. Amendola, L. Fabbrizzi, F. Forti, M. Licchelli, C. Mangano, P. Pallavicini, A. Poggi, D. Sacchi, and A. Taglieti, Coord. Chem. Rev., 250, 273 (2006). https://doi.org/10.1016/j.ccr.2005.04.022
  3. F. Song, A. L. Garner, and K. Koide, J. Am. Chem. Soc., 129, 12354 (2007). https://doi.org/10.1021/ja073910q
  4. M. E. Jun and K. H. Ahn, Org. Lett., 12, 2790 (2010). https://doi.org/10.1021/ol100905g
  5. H. Li, J. Fan, J. Du, K. Guo, S. Sun, X. Liu, and X. Peng, Chem. Commun., 46, 1079 (2010). https://doi.org/10.1039/B916915F
  6. C. E. Garrett and K. Prasad, Adv. Synth. Catal., 346, 889 (2004). https://doi.org/10.1002/adsc.200404071
  7. S. Y. Yu, H. W. Rhee, and J. I. Hong, Tetrahedron. Lett., 52, 1512 (2011). https://doi.org/10.1016/j.tetlet.2011.01.118
  8. M. Santra, S. K. Ko, I. Shin, and K. H. Ahn, Chem. Commun., 46, 3964 (2010). https://doi.org/10.1039/c001922d
  9. M. Sameiro and T. Goncalves, Chem. Rev., 109, 190 (2009). https://doi.org/10.1021/cr0783840
  10. R. W. Sinkeldam, N. J. Greco, and Y. Tor, Chem. Rev., 110, 2579 (2010). https://doi.org/10.1021/cr900301e
  11. S. Y. Moon, N. J. Youn, S. M. Park, and S. K. Chang, J. Org. Chem., 70, 2394 (2005). https://doi.org/10.1021/jo0482054
  12. Y. Zhou, C. Y. Zhu, X. S. Gao, X. Y. You, and C. Yao, Org. Lett., 12, 2566 (2010). https://doi.org/10.1021/ol1007636
  13. L. Ma, H. Li, and Y. Wu, Sens. Actuators B-Chem., 143, 25 (2009). https://doi.org/10.1016/j.snb.2009.09.010
  14. J. S. Kim, M. G. Choi, K. C. Song, K. T. No, S. Ahn, and S. K. Chang, Org. Lett., 9, 1129 (2007). https://doi.org/10.1021/ol070143r
  15. S. M. Park, M. H. Kim, J. I. Choe, K. T. No, and S. K. Chang, J. Org. Chem., 72, 3550 (2007). https://doi.org/10.1021/jo062516s
  16. Z. Xu, J. Yoon, and D. R. Spring, Chem. Commun., 46, 2563 (2010). https://doi.org/10.1039/c000441c
  17. J. Xie, M. Menand, S. Maisonneuve, and R. Metivier, J. Org. Chem., 72, 5980 (2007). https://doi.org/10.1021/jo070315y
  18. H. Zhang, L. F. Han, K. A. Zachariasse, and Y. B. Jiang, Org. Lett., 7, 4217 (2005). https://doi.org/10.1021/ol051614h
  19. J. S. Yang, C. S. Lin, and C. Y. Hwang, Org. Lett., 3, 889 (2001) https://doi.org/10.1021/ol015524y
  20. I. T. Ho, and W. S. Chung, Tetrahedron. Lett., 50, 302 (2009) https://doi.org/10.1016/j.tetlet.2008.10.147
  21. H. C. Hung, C. W. Cheng, Y. Y. Wang, Y. J. Chen, and W. S. Chung, Eur. J. Org. Chem., 36, 6360 (2009).
  22. V. I. Vullev and G. Jones II, Tetrahedron Lett., 43, 8611 (2002). https://doi.org/10.1016/S0040-4039(02)01895-6
  23. S. Karuppannan and J. C. Chambron, Chem. Asian J., 6, 964 (2011). https://doi.org/10.1002/asia.201000724
  24. A. Okamoto, K. Kanatani, and I. Saito, J. Am. Chem. Soc., 126, 4820 (2004). https://doi.org/10.1021/ja039625y
  25. G. Jones and V. I. Vullev, Org. Lett., 4, 4001 (2002). https://doi.org/10.1021/ol026656+
  26. C. Armbruster, M. Knapp, K. Rechthaler, R. Schamschule, A. B. J. Parusel, G. Kohler, and W. Wehrmann, J. Photochem. Photobiol. A-Chem., 125, 29 (1999). https://doi.org/10.1016/S1010-6030(99)00099-4
  27. S. S. Bag, R. Kundu, K. Matsumoto, Y. Saito, and I. Saito, Bioorg. Med. Chem. Lett., 20, 3227 (2010). https://doi.org/10.1016/j.bmcl.2010.04.063
  28. A. Jana, S. Atta, S. K. Sarkar, and N. D. P. Singh, Tetrahedron, 66, 9798 (2010). https://doi.org/10.1016/j.tet.2010.10.090
  29. H. J. Kim, J. Hong, A. Hong, S. Ham, J. H. Lee, and J. S. Kim, Org. Lett., 10, 1963 (2008) https://doi.org/10.1021/ol800475d
  30. H. Y. Lee, D. R. Bae, J. C. Park, H. Song, W. S. Han, and J. H. Jung, Angew. Chem., Int. Ed., 48, 1239 (2009). https://doi.org/10.1002/anie.200804714
  31. S. P. Wu, T. H. Wang, and S. R. Liu, Tetrahedron, 66, 9655 (2010). https://doi.org/10.1016/j.tet.2010.10.054
  32. L. Duan, Y. Xu, and X. Qian, Chem. Commun., 44, 6339 (2008).
  33. J. Wang, H. B. Liu, S. Park, S. Y. Kim, T. Joo, and C. S. Ha, RSC Adv., 2, 4249 (2012).

Cited by

  1. Schiff Base Functionalized 1,2,4-Triazole and Pyrene Derivative for Selective and Sensitive Detection of Cu2+ ion in the Mixed Organic- Aqueous Media vol.31, pp.6, 2013, https://doi.org/10.1007/s10895-021-02802-4