Current Concept and Future of the Management of Spinal Cord Injury: A Systematic Review

척수손상 치료 약제의 현재와 미래: 체계적 고찰

  • Choi, Il (Department of Neurological Surgery, Asan Medical Center, University of Ulsan, College of Medicine) ;
  • Ha, Jin Gyeong (Department of Neurological Surgery, Asan Medical Center, University of Ulsan, College of Medicine) ;
  • Jeon, Sang Ryong (Department of Neurological Surgery, Asan Medical Center, University of Ulsan, College of Medicine)
  • 최일 (울산대학교 의과대학 서울아산병원 신경외과학교실) ;
  • 하진경 (울산대학교 의과대학 서울아산병원 신경외과학교실) ;
  • 전상용 (울산대학교 의과대학 서울아산병원 신경외과학교실)
  • Received : 2013.02.06
  • Accepted : 2013.07.01
  • Published : 2013.09.30

Abstract

Spinal cord injury (SCI) is a serious condition associated with social and familial burden, as well as significant neurologic deficit. Despite the many advances in the treatment of spinal cord injury, a fundamental treatment for neurologic functional recovery has not yet been developed. In this article, we review two directions of development for spinal cord injury treatment: neuroprotective pharmacological agents and axon-regenerating cell therapy. We expect developments in these two to lead to improve functional recovery in patients with spinal cord injuries and to reduce burdens on society, as well as the patients' families.

Keywords

References

  1. J B. The Edwin Smith surgical papyrus. In: R W, ed. Neurosurgical classics. New York Johnson Reprint Corp. ; 1965: 1-5.
  2. Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001; 24: 254-64. https://doi.org/10.1097/00002826-200109000-00002
  3. Balentine JD. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 1978; 39: 236-53.
  4. Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery 1999; 44: 1027-39; discussion 39-40. https://doi.org/10.1097/00006123-199905000-00052
  5. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 1991; 75: 15-26. https://doi.org/10.3171/jns.1991.75.1.0015
  6. Hadley MN, Walters BC, Grabb PA, Oyesiku NM, Przybylski GJ, Resnick DK, et al. Guidelines for the management of acute cervical spine and spinal cord injuries. Clin Neurosurg 2002; 49: 407-98.
  7. Fehlings MG, Louw D. Initial stabilization and medical management of acute spinal cord injury. Am Fam Physician 1996; 54: 155-62.
  8. Baptiste DC, Fehlings MG. Update on the treatment of spinal cord injury. Prog Brain Res 2007; 161: 217-33. https://doi.org/10.1016/S0079-6123(06)61015-7
  9. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 2007; 45: 206-21. https://doi.org/10.1038/sj.sc.3102008
  10. Kim, Yun. Spinal cord injury. In: The Korean Spinal Neurosurgery Society, ed. The Textbook of Spine. Seoul: GunJa; 2008: 558-81.
  11. Hurlbert RJ. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine (Phila Pa 1976) 2001; 26: S39- 46. https://doi.org/10.1097/00007632-200112151-00009
  12. Gregory W. J. Hawryluk, Fehlings MG. Current Status and Future Direction of Management of Spinal Cord Injury. In: H. Richard Winn M, ed. Youmans Neurological Surgery. philadephia: Elsevier Inc. ;2011: 2730-40.
  13. Pehar M, Vargas MR, Robinson KM, Cassina P, England P, Beckman JS, et al. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic Biol Med 2006; 41: 1632-44. https://doi.org/10.1016/j.freeradbiomed.2006.08.010
  14. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med 1990; 322: 1405-11. https://doi.org/10.1056/NEJM199005173222001
  15. Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 2006; 23: 318-34. https://doi.org/10.1089/neu.2006.23.318
  16. Pitts LH, Ross A, Chase GA, Faden AI. Treatment with thyrotropin- releasing hormone (TRH) in patients with traumatic spinal cord injuries. J Neurotrauma 1995; 12: 235-43. https://doi.org/10.1089/neu.1995.12.235
  17. Petitjean ME, Pointillart V, Dixmerias F, Wiart L, Sztark F, Lassie P, et al. [Medical treatment of spinal cord injury in the acute stage]. Ann Fr Anesth Reanim 1998; 17: 114-22. https://doi.org/10.1016/S0750-7658(98)80058-0
  18. Cafferty WB, Bradbury EJ, Lidierth M, Jones M, Duffy PJ, Pezet S, et al. Chondroitinase ABC-mediated plasticity of spinal sensory function. J Neurosci 2008; 28: 11998-2009. https://doi.org/10.1523/JNEUROSCI.3877-08.2008
  19. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008; 25: E2.
  20. Kojima A, Tator CH. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J Neuropathol Exp Neurol 2000; 59: 687-97.
  21. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 2003; 126: 1628-37. https://doi.org/10.1093/brain/awg178
  22. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 1998; 95: 15769-74. https://doi.org/10.1073/pnas.95.26.15769
  23. Bhatt JM, Gordon PH. Current clinical trials in amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2007; 16: 1197-207. https://doi.org/10.1517/13543784.16.8.1197
  24. Mu X, Azbill RD, Springer JE. Riluzole and methylprednisolone combined treatment improves functional recovery in traumatic spinal cord injury. J Neurotrauma 2000; 17: 773-80. https://doi.org/10.1089/neu.2000.17.773
  25. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 2010; 24: 10-22. https://doi.org/10.1177/1545968309347685
  26. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, et al. Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003; 116: 1488-91.
  27. Huang H, Wang H, Chen L, Gu Z, Zhang J, Zhang F, et al. Influence factors for functional improvement after olfactory ensheathing cell transplantation for chronic spinal cord injury. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006; 20: 434-8.
  28. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 2006; 29: 191-203; discussion 4-6.
  29. Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, et al. Safety of intramedullary Schwann cell trans-plantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15: 515-25. https://doi.org/10.3171/2011.6.SPINE10917
  30. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011; 28: 1611-82. https://doi.org/10.1089/neu.2009.1177
  31. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70: 1238-47; discussion 47. https://doi.org/10.1227/NEU.0b013e31824387f9
  32. Saito F, Nakatani T, Iwase M, Maeda Y, Murao Y, Suzuki Y, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study. Restor Neurol Neurosci 2012; 30: 127-36.
  33. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 2011; 25: 516-22. https://doi.org/10.3109/02688697.2010.550658
  34. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, et al. Ex vivo-expanded autologous bone marrowderived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009; 11: 897-911. https://doi.org/10.3109/14653240903253857
  35. Saito F, Nakatani T, Iwase M, Maeda Y, Hirakawa A, Murao Y, et al. Spinal cord injury treatment with intrathecal autologous bone marrow stromal cell transplantation: the first clinical trial case report. J Trauma 2008; 64: 53-9. https://doi.org/10.1097/TA.0b013e31815b847d
  36. Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 2010; 28: 589-603.
  37. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 2008; 132: 661-80. https://doi.org/10.1016/j.cell.2008.02.008
  38. Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 2004; 24: 159-71. https://doi.org/10.1111/j.1440-1789.2004.00552.x
  39. Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006; 82: 865-75.
  40. Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 2007; 213: 341-7. https://doi.org/10.1002/jcp.21200
  41. Verma A, Verma N. Induced pluripotent stem cells and promises of neuroregenerative medicine. Neurol India 2011; 59: 555-7. https://doi.org/10.4103/0028-3886.84337
  42. Erceg S, Ronaghi M, Stojkovic M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells 2009; 27: 78-87. https://doi.org/10.1634/stemcells.2008-0543
  43. Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010; 28: 93-9.
  44. Li JY, Christophersen NS, Hall V, Soulet D, Brundin P. Critical issues of clinical human embryonic stem cell therapy for brain repair. Trends Neurosci 2008; 31: 146-53. https://doi.org/10.1016/j.tins.2007.12.001
  45. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-7. https://doi.org/10.1126/science.284.5411.143
  46. Osaka M, Honmou O, Murakami T, Nonaka T, Houkin K, Hamada H, et al. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome. Brain Res 2010; 1343: 226-35. https://doi.org/10.1016/j.brainres.2010.05.011
  47. Akiyama Y, Radtke C, Kocsis JD. Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 2002; 22: 6623-30.
  48. Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, et al. Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 2006; 20: 278-96. https://doi.org/10.1177/1545968306286976
  49. Samdani AF, Paul C, Betz RR, Fischer I, Neuhuber B. Transplantation of human marrow stromal cells and mononuclear bone marrow cells into the injured spinal cord: a comparative study. Spine (Phila Pa 1976) 2009; 34: 2605-12. https://doi.org/10.1097/BRS.0b013e3181bdca87
  50. Wright KT, Masri WE, Osman A, Chowdhury J, Johnson WEB. Concise Review: Bone Marrow for the Treatment of Spinal Cord Injury: Mechanisms and Clinical Applications. STEM CELLS 2011; 29: 169-78. https://doi.org/10.1002/stem.570
  51. Dasari VR, Spomar DG, Cady C, Gujrati M, Rao JS, Dinh DH. Mesenchymal stem cells from rat bone marrow downregulate caspase-3-mediated apoptotic pathway after spinal cord injury in rats. Neurochem Res 2007; 32: 2080-93. https://doi.org/10.1007/s11064-007-9368-z
  52. Bakshi A, Barshinger AL, Swanger SA, Madhavani V, Shumsky JS, Neuhuber B, et al. Lumbar puncture delivery of bone marrow stromal cells in spinal cord contusion: a novel method for minimally invasive cell transplantation. J Neurotrauma 2006; 23: 55-65. https://doi.org/10.1089/neu.2006.23.55
  53. Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, et al. Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 2004; 187: 266-78. https://doi.org/10.1016/j.expneurol.2004.01.021
  54. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008; 17: 1277-93. https://doi.org/10.3727/096368908787648074
  55. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25: 2066-73. https://doi.org/10.1634/stemcells.2006-0807
  56. Pal R, Gopinath C, Rao NM, Banerjee P, Krishnamoorthy V, Venkataramana NK, et al. Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury. Cytotherapy 2010; 12: 792-806. https://doi.org/10.3109/14653249.2010.487899
  57. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, Mahmoud H, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair 2010; 24: 702-8. https://doi.org/10.1177/1545968310369801
  58. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, et al. Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 2000; 11: 3001-5. https://doi.org/10.1097/00001756-200009110-00035
  59. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002; 99: 2199-204. https://doi.org/10.1073/pnas.042678299
  60. Wu S, Suzuki Y, Ejiri Y, Noda T, Bai H, Kitada M, et al. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 2003; 72: 343-51. https://doi.org/10.1002/jnr.10587
  61. Ankeny DP, McTigue DM, Jakeman LB. Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 2004; 190: 17-31. https://doi.org/10.1016/j.expneurol.2004.05.045
  62. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005; 11: 913-22. https://doi.org/10.1089/ten.2005.11.913
  63. Callera F, de Melo CM. Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site. Stem Cells Dev 2007; 16: 461-6. https://doi.org/10.1089/scd.2007.0083
  64. Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda- Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187-94.
  65. Obenaus A, Dilmac N, Tone B, Tian HR, Hartman R, Digicaylioglu M, et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury. Ann Neurol 2011; 69: 282-91. https://doi.org/10.1002/ana.22168
  66. Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci U S A 2007; 104: 10211-6. https://doi.org/10.1073/pnas.0608519104
  67. Gonzalez-Lara LE, Xu X, Hofstetrova K, Pniak A, Chen Y, McFadden CD, et al. The use of cellular magnetic resonance imaging to track the fate of iron-labeled multipotent stromal cells after direct transplantation in a mouse model of spinal cord injury. Mol Imaging Biol 2011; 13: 702-11. https://doi.org/10.1007/s11307-010-0393-y
  68. Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with brain trauma. N Engl J Med 2006; 355: 2376-8. https://doi.org/10.1056/NEJMc055304
  69. Deda H, Inci MC, Kurekci AE, Kayihan K, Ozgun E, Ustunsoy GE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008; 10: 565-74. https://doi.org/10.1080/14653240802241797
  70. Saberi H, Moshayedi P, Aghayan HR, Arjmand B, Hosseini SK, Emami-Razavi SH, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci Lett 2008; 443: 46-50. https://doi.org/10.1016/j.neulet.2008.07.041
  71. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006; 15: 675-87. https://doi.org/10.3727/000000006783464381
  72. Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 2006; 34: 130-1. https://doi.org/10.1016/j.exphem.2005.11.006
  73. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 2005; 3: 173-81. https://doi.org/10.3171/spi.2005.3.3.0173