DOI QR코드

DOI QR Code

Dynamic Response Analysis for Upper Structure of 5MW Offshore Wind Turbine System based on Multi-Body Dynamics Simulation

다물체 동역학 시뮬레이션 기반 5MW급 해상풍력발전시스템의 상부구조물에 대한 동적 응답 해석

  • Received : 2013.09.05
  • Accepted : 2013.10.09
  • Published : 2013.11.25

Abstract

Recently renewable energy such as offshore wind energy takes a higher interest due to the depletion of fossil fuel and the environmental pollution. This paper deals with multi-body dynamics (MBD) analysis technique for offshore wind turbine system considering aerodynamic loads and Thevenin equation used for determination of electric generator torque. Dynamic responses of 5MW offshore wind turbine system are evaluated via the MBD analysis, and the system is the horizontal axis wind turbine (HAWT) which generates electricity from the three blades horizontally installed at upwind direction. The aerodynamic loads acting on the blades are computed by AeroDyn code, which is capable of accommodating a generalized dynamic wake using blade element momentum (BEM) theory. In order that the characteristics of dynamic loads and torques on the main joint parts of offshore wind turbine system are simulated similarly such an actual system, flexible body modeling including the actual structural properties are applied for both blade and tower in the multi-body dynamics model.

최근 화석연료의 고갈과 환경오염으로 인하여 해상풍력에너지와 같은 신재생 에너지에 대한 관심이 높아지고 있다. 본 연구에서는 범용 동역학해석 프로그램인 MSC.ADAMS를 이용하여 공력하중 및 전기 발전기 토오크를 결정하기 위한 테브난(Thevenin) 방정식이 고려된 해상풍력발전기의 다물체 동역학 해석 기법을 검토하였다. 해석대상으로 고려한 시스템은 5MW급 해상풍력발전기이며, 3개의 블레이드가 수평축 방향에서 역풍을 받아 전기를 생산하는 수평축 풍력발전 형태이다. 블레이드에 작용하는 공력하중은 블레이드 요소 모멘텀 이론을 기반으로 일반화된 동적 웨이크를 고려할 수 있도록 개발된 AeroDyn 프로그램으로부터 산출하였다. 해상풍력발전기의 주요 연결부에서의 동적하중과 토오크 특성이 실제 현상과 유사하게 산출될 수 있도록 하기 위하여, 다물체 동역학 모델 상에 블레이드와 타워는 실제 구조 특성치를 고려한 유연체 모델링을 적용하였다.

Keywords

References

  1. Sutherland, H.J., Mandell, J.F., 2004, "Effect of mean stress on the damage of wind turbine blades", Journal of Solar Energy Engineering, Vol. 126, 1041-1049. https://doi.org/10.1115/1.1785160
  2. Maher, A, Noroozi, S., Vinney, J., 2007, "Combined analytical/ FEA-based coupled aero structure simulation of a wind turbine with bend-twist adaptive blades", Renewable Energy, Vol. 32, 916-930. https://doi.org/10.1016/j.renene.2006.04.007
  3. Zhao, X., Maiaer, P., Wu, J., 2007, "A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element", Renewable Energy, Vol. 32, 532-546. https://doi.org/10.1016/j.renene.2006.04.010
  4. Muyeen, S.M., Ali, M.H., Takahashi, R., Murata, T., Tamura, J., 2008, "Damping of blade-shaft torsional oscillations of wind turbine generator system", Electric Power Components and Systems, Vol. 36, 195-211. https://doi.org/10.1080/15325000701549293
  5. Oerlemans, S., Schepers, J.G., 2009, "Prediction of wind turbine noise and validation against experiment", Aeroacoustics, Vol. 8, 555-584. https://doi.org/10.1260/147547209789141489
  6. Kim, J., Kim, W., 2011, "Viscous flow analysis around a wind turbine blade with end plate and rake", Journal of the Korean Society for Marine Environmental Engineering, Vol. 14, 273-279. https://doi.org/10.7846/JKOSMEE.2011.14.4.273
  7. Jonkman, J.M., 2009, "Dynamics of offshore floating wind turbines -model development and verification", Wind Energy, Vol. 12, 459-492. https://doi.org/10.1002/we.347
  8. Passon, P., Kuhn, M., 2005, "State-of-the-art and development needs of simulation codes for offshore wind turbines", Copenhagen Offshore Wind 2005 Conference and Expedition Proceedings, Copenhagen, Denmark.
  9. MSC. Software, 2005, "ADAMS/WT User's Guide-Ver. 2.0", USA.
  10. MSC. Software, 2010, "MSC.ADAMS User's Manual-Ver. 2010", USA.
  11. NREL, 2002, "AeroDyn User's Guide-Ver. 12.5", USA.
  12. NREL, 2005, "AeroDyn Theory Manual", USA.
  13. Robinson, M., Musial, W., 2006, "Offshore Wind Technology Overview", NREL Report, NREL/PR-500-40462.
  14. GL, 2003, "Guideline for the Certification of Wind Turbines", Germany.
  15. GL, 2005, "Guideline for the Certification of Offshore Wind Turbines", Germany.
  16. IEC, 2005, "IEC 61400-1: Design Requirements for Wind Turbines-Third Edition", Switzerland.
  17. IEC, 2009, "IEC 61400-3: Design Requirements for Offshore Wind Turbines-Edition 1.0", Switzerland.
  18. Passon, P., Kuhn, M., Butterfield, S., Jonkman, J., Camp, T., Larsen, T. J., 2007, "OC3-Benchmark exercise of aero-elastic offshore wind turbine codes", Journal of Physics: Conference Series, Vol. 75, 1-12.
  19. Jang, S.J., Sohn, J.H., 2011, "Analysis of dynamic behavior of floating offshore wind turbine system", Trans. Korean Soc. Mech. Eng. A, Vol. 35, 77-83. https://doi.org/10.3795/KSME-A.2011.35.1.077
  20. Park, K., Cha, J., Ku, N., Jo, A., Lee, K., 2012, "Structural analysis of floating offshore wind turbine tower based on flexible multibody dynamics", Trans. Korean Soc. Mech. Eng. A, Vol. 36, 1489-1495. https://doi.org/10.3795/KSME-A.2012.36.12.1489
  21. Riso National Laboratory, 2007, "HAWC2 User's Manual-Ver. 3.1", Demark.
  22. NREL, 2005, "FAST User's Guide-Ver. 6.0", USA.
  23. Shabana, A.A., 2005, "Dynamics of Multibody Systems, Third edition", Cambridge University Press.
  24. Dorf, R.C., Svoboda, J.A., 2010, "Introduction to Electric Circuits (8th ed.)", John Wiley & Sons.
  25. Jonkman, J.M., 2007, "Dynamics modeling and loads analysis of an offshore floating wind turbine", NREL Technical Report, NREL/TP-500-41958.