DOI QR코드

DOI QR Code

Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer

AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성

  • Lee, Eun Hye (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Song, Jin Dong (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Yoen, Kyu Hyoek (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Bae, Min Hwan (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Oh, Hyun Ji (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Han, Il Ki (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Choi, Won Jun (Center for Opto-Electronic Convergence Systems, Korea Institute of Science and Technology) ;
  • Chang, Soo Kyung (Department of Physics, Yonsei University)
  • 이은혜 (한국과학기술연구원 광전융합시스템연구단) ;
  • 송진동 (한국과학기술연구원 광전융합시스템연구단) ;
  • 연규혁 (한국과학기술연구원 광전융합시스템연구단) ;
  • 배민환 (한국과학기술연구원 광전융합시스템연구단) ;
  • 오현지 (한국과학기술연구원 광전융합시스템연구단) ;
  • 한일기 (한국과학기술연구원 광전융합시스템연구단) ;
  • 최원준 (한국과학기술연구원 광전융합시스템연구단) ;
  • 장수경 (연세대학교 물리학과)
  • Received : 2013.08.26
  • Accepted : 2013.09.30
  • Published : 2013.11.30

Abstract

The $AlAs_xSb_{1-x}$ step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and $Al_{0.3}Ga_{0.7}As$/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on $AlAs_xSb_{1-x}$ step-graded buffer layer was ~1.7 nm. $Al_{0.3}Ga_{0.7}As$/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the $AlAs_xSb_{1-x}$/Si substrate. Photoluminescence (PL) peak at 10 K for the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

실리콘(Silicon, Si) 기판과 $Al_{0.3}Ga_{0.7}As$/GaAs 다중 양자 우물(multiple quantum wells, MQWs) 간의 격자 부정합 해소를 위해 $AlAs_xSb_{1-x}$ 층이 단계 성분 변화 완충층(step-graded buffer, SGB)으로 이용되었다. $AlAs_xSb_{1-x}$ 층 상에 형성된 GaAs 층의 RMS 표면 거칠기(root-mean-square surface roughness)는 $10{\times}10{\mu}m$ 원자 힘 현미경(atomic force microscope, AFM) 이미지 상에서 약 1.7 nm로 측정되었다. $AlAs_xSb_{1-x}$/Si 기판 상에 AlAs/GaAs 단주기 초격자(short period superlattice, SPS)를 이용한 $Al_{0.3}Ga_{0.7}As$/GaAs MQWs이 형성되었다. $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조는 약 10 켈빈(Kalvin, K)에서 813 nm 부근의 매우 약한 포토루미네선스(photoluminescence, PL) 피크를 보였고, $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조의 RMS 표면 거칠기는 약 42.9 nm로 측정되었다. 전자 투과 현미경(transmission electron microscope, TEM) 단면 이미지 상에서 AlAs/GaAs SPS 로부터 $Al_{0.3}Ga_{0.7}As$/GaAs MQWs까지 격자 결함들(defects)이 관찰되었고, 이는 격자 결함들이 $Al_{0.3}Ga_{0.7}As$/GaAs MQW 구조의 표면 거칠기와 광 특성에 영향을 주었음을 보여준다.

Keywords

References

  1. T. Mano, T. Kuroda, K. Mitsuishi, Y. Nakayama, T. Noda, and K. Sakoda, Appl. Phys. Lett. 93, 203110 (2008). https://doi.org/10.1063/1.3026174
  2. C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, Electron. Lett. 46, 1286 (2010). https://doi.org/10.1049/el.2010.1844
  3. S. L. Diedenhofen, G. Grzela, E. Haverkamp, G. Bauhuis, J. Schermer, and J. G. Rivas, Sol. Energ. Mat. Sol. C. 101, 308 (2012). https://doi.org/10.1016/j.solmat.2012.02.022
  4. L. Cavigli, M. Abbarchi, S. Bietti, C. Somaschini, S. Sanguinetti, N. Koguchi, A. Vinattieri, and M. Gurioli, Appl. Phys. Lett. 98, 103104 (2011). https://doi.org/10.1063/1.3560303
  5. P. S. Dutta and H. L. Bhat, J. Appl. Phys. 81, 5821 (1997). https://doi.org/10.1063/1.365356
  6. K. Ma, R. Urata, D. A. B. Miller, and J. S. Harris, IEEE J. Quantum Electron. 40, 800 (2004). https://doi.org/10.1109/JQE.2004.828234
  7. Y. B. Bolkhovityanov and O. P. Pchelyakov, Physics-Uspekhi 51, 437 (2008). https://doi.org/10.1070/PU2008v051n05ABEH006529
  8. Y. Shimizu and Y. Okada, J. Cryst. Growth 265, 99 (2004). https://doi.org/10.1016/j.jcrysgro.2004.01.061
  9. R. D. Dupuis and C. J. Pizone, J. Cryst. Growth 93, 435 (1988).
  10. Y. K. Noh, M. D. Kim, J. E. Oh, and W. C. Yang, J. Korean Phys. Soc. 57, 173 (2010). https://doi.org/10.3938/jkps.57.173
  11. K. Akahane, N. Yamamoto, S. Gozu, and N. Ohtani, J. Cryst. Growth 264, 21 (2004). https://doi.org/10.1016/j.jcrysgro.2003.12.041
  12. A. N. Semenov, O. G. Lyublinskaya, V. A. Solov'ev, B. Ya Mel'tser, and S. V. Ivanov, Semicond. 42, 74 (2011).
  13. S. Saravanan, Y. Hayashi, T. Soga, T. Jimbo, M. Umeno, N. Sato, and T. Yonehara, J. Appl. Phys. 89, 5215 (2001). https://doi.org/10.1063/1.1362339
  14. H. Tanoto, S. F. Yoon, W. K. Loke, K. P. Chen, E. A. Fitzgerald, C. Dohrman, and B. Narayanan, J. Appl. Phys. 103, 104901 (2008). https://doi.org/10.1063/1.2921835
  15. S. H. Shin, J. D. Song, J. Y. Lim, H. C. Koo, and T. G. Kim, Mater. Res. Bull. 47, 2927 (2012). https://doi.org/10.1016/j.materresbull.2012.04.121
  16. K. Y. Cheng, Proceedings of the IEEE 85, 1694 (1997). https://doi.org/10.1109/5.649646
  17. A. Jallipalli, G. Balakrishnan, S. H. Huang, A. Khoshakhlagh, L. R. Dawson, and D. L. Huffaker, J. Cryst. Growth 303, 449 (2007). https://doi.org/10.1016/j.jcrysgro.2006.12.032
  18. B. Z. Nosho, B. R. Bennett, L. J. Whitman, and M. Goldenberg, J. Vac. Sci. Technol. B 19, 1626 (2001). https://doi.org/10.1116/1.1386377