DOI QR코드

DOI QR Code

Comparative Analysis of the Korean Population of Magnaporthe oryzae by Multilocus Microsatellite Typing

  • Choi, Jaehyuk (Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Hyojung (Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Yong-Hwan (Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2013.04.30
  • Accepted : 2013.05.25
  • Published : 2013.12.01

Abstract

Rice blast fungus, Magnaporthe oryzae, inflicts serious damage to global rice production. Due to high variability of this fungal pathogen, resistance of newly-released rice cultivars is easily broken down. To understand the population structure of M. oryzae, we analyzed the genetic diversity of the Korean population using multilocus microsatellite typing. Eleven microsatellite markers were applied to the population of 190 rice isolates which had been collected in Korea for two decades since the 1980's. Average values of gene diversity and allele frequency were 0.412 and 6.5, respectively. Comparative analysis of the digitized allele information revealed that the Korean population exhibited a similar level of allele diversity to the integrated diversity of the world populations, suggesting a particularly high diversity of the Korean population. Therefore, these microsatellite markers and the comprehensive collection of field isolates will be useful genetic resources to identify the genetic diversity of M. oryzae population.

Keywords

References

  1. Adreit, H., Santoso, Andriantsimialona, D., Utami, D. W., Notteghem, J. L., Lebrun, M. H. and Tharreau, D. 2007. Microsatellite markers for population studies of the rice blast fungus, Magnaporthe grisea. Mol. Ecol. Notes 7:667-670. https://doi.org/10.1111/j.1471-8286.2006.01672.x
  2. Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. and Bonhomme, F. 1996-2004. GENETIX 4.05, logiciel sous Windows TM pour la genetique des populations. Laboratoire Genome, Populations, Interactions, CNRS UMR 5171, Universite de Montpellier II, Montpellier (France).
  3. Borromeo, E. S., Nelson, R. J., Bonman, J. M. and Leung, H. 1993. Genetic differentiation among Isolates of Pyricularia infecting rice and weed hosts. Phytopathology 83:393-399. https://doi.org/10.1094/Phyto-83-393
  4. Brondani, C., Brondani, R. P. V., Garrido, L. D. and Ferreira, M. E. 2000. Development of microsatellite markers for the genetic analysis of Magnaporthe grisea. Genet. Mol. Biol. 23:753-762. https://doi.org/10.1590/S1415-47572000000400009
  5. Chao, C. C. T. and Ellingboe, A. H. 1991. Selection for mating competence in Magnaporthe grisea pathogenic to rice. Can. J. Bot. 69:2130-2134. https://doi.org/10.1139/b91-267
  6. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H. Q., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W. X., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980-986. https://doi.org/10.1038/nature03449
  7. Feng, S. J., Ma, J. H., Lin, F., Wang, L. and Pan, Q. H. 2007. Construction of an electronic physical map of Magnaporthe oryzae using genomic position-ready SSR markers. Chin. Sci. Bull. 52:3346-3354. https://doi.org/10.1007/s11434-007-0498-0
  8. Hamer, J. E., Farrall, L., Orbach, M. J., Valent, B. and Chumley, F. G. 1989. Host species-specific conservation of a family of repeated DNA-sequences in the genome of a fungal plant pathogen. Proc. Natl. Acad. Sci. U. S. A. 86:9981-9985. https://doi.org/10.1073/pnas.86.24.9981
  9. Jarne, P. and Lagoda, P. J. L. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11:424-429. https://doi.org/10.1016/0169-5347(96)10049-5
  10. Karaoglu, H., Lee, C. M. Y. and Meyer, W. 2005. Survey of simple sequence repeats in completed fungal genomes. Mol. Biol. Evol. 22:639-649. https://doi.org/10.1093/molbev/msi057
  11. Kato, H. 2001. Rice blast disease. Pestic. Outlook 12:23-25. https://doi.org/10.1039/b100803j
  12. Kaye, C., Milazzo, J., Rozenfeld, S., Lebrun, M. H. and Tharreau, D. 2003. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet. Biol. 40:207-214. https://doi.org/10.1016/j.fgb.2003.08.001
  13. Leung, H., Borromeo, E. S., Bernardo, M. A. and Notteghem, J. L. 1988. Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology 78:1227-1233. https://doi.org/10.1094/Phyto-78-1227
  14. Levinson, G. and Gutman, G. A. 1987. Slipped-strand mispairing: a major mechanism for DNA-sequence evolution. Mol. Biol. Evol. 4:203-221.
  15. Levy, M., Romao, J., Marchetti, M. A. and Hamer, J. E. 1991. DNA fingerprinting with a dispersed repeated sequence resolves pathotype diversity in the rice blast fungus. Plant Cell 3:95-102. https://doi.org/10.1105/tpc.3.1.95
  16. Levy, M., Correavictoria, F. J., Zeigler, R. S., Xu, S. Z. and Hamer, J. E. 1993. Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology 83:1427-1433. https://doi.org/10.1094/Phyto-83-1427
  17. Lim, S., Notley-McRobb, L., Lim, M. and Carter, D. A. 2004. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet. Biol. 41:1025-1036. https://doi.org/10.1016/j.fgb.2004.08.004
  18. Meung, H., Zhu, Y. Y., Revilla-Molina, I., Fan, J. X., Chen, H. R., Pangga, I., Cruz, C. V. and Mew, T. W. 2003. Using genetic diversity to achieve sustainable rice disease management. Plant Dis. 87:1156-1169. https://doi.org/10.1094/PDIS.2003.87.10.1156
  19. Oda, S., Oki, E., Maehara, Y. and Sugimachi, K. 1997. Precise assessment of microsatellite instability using high resolution fluorescent microsatellite analysis. Nucleic Acids Res. 25:3415-3420. https://doi.org/10.1093/nar/25.17.3415
  20. Ou, S. H. 1980. Pathogen variability and host resistance in rice blast disease. Annu. Rev. Phytopathol. 18:167−187. https://doi.org/10.1146/annurev.py.18.090180.001123
  21. Ou, S. H. 1985. Rice Diseases. 2nd ed. Commonwealth Agricultural Bureaux, Wallingford, UK.
  22. Park, S. Y., Milgroom, M. G., Han, S. S., Kang, S. and Lee, Y. H. 2003. Diversity of pathotypes and DNA fingerprint haplotypes in populations of Magnaporthe grisea in Korea over two decades. Phytopathology 93:1378-1385. https://doi.org/10.1094/PHYTO.2003.93.11.1378
  23. Raymond, M. and Rousset, F. 1995. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86:248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  24. Seck, P. A., Diagne, A., Mohanty, S. and Wopereis, M. C. S. 2012. Crops that feed the world 7: Rice. Food Secur. 4:7-24. https://doi.org/10.1007/s12571-012-0168-1
  25. Skamnioti, P. and Gurr, S. J. 2009. Against the grain: safeguarding rice from rice blast disease. Trends Biotechnol. 27:141-150. https://doi.org/10.1016/j.tibtech.2008.12.002
  26. Suzuki, F., Suga, H., Tomimura, K., Fuji, S., Arai, M., Koba, A. and Nakajima, T. 2009. Development of simple sequence repeat markers for Japanese isolates of Magnaporthe grisea. Mol. Ecol. Resour. 9:588-590. https://doi.org/10.1111/j.1755-0998.2008.02446.x
  27. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17:6463-6471. https://doi.org/10.1093/nar/17.16.6463
  28. Toh, Y., Oki, E., Oda, S., Tomoda, M., Tomisaki, S., Ichiyoshi, Y., Ohno, S. and Sugimachi, K. 1996. An integrated microsatellite length analysis using an automated fluorescent DNA sequencer. Cancer Res. 56:2688-2691.
  29. Valent, B. and Chumley, F. G. 1991. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu. Rev. Phytopathol. 29:443-467. https://doi.org/10.1146/annurev.py.29.090191.002303
  30. Valent, B., Farrall, L. and Chumley, F. G. 1991. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127:87-101.
  31. Xia, J. Q., Correll, J. C., Lee, F. N., Marchetti, M. A. and Rhoads, D. D. 1993. DNA fingerprinting to examine microgeographic variation in the Magnaporthe grisea (Pyricularia grisea) population in two rice fields in Arkansas. Phytopathology 83:1029-1035. https://doi.org/10.1094/Phyto-83-1029
  32. Zane, L., Bargelloni, L. and Patarnello, T. 2002. Strategies for microsatellite isolation: a review. Mol. Ecol. 11:1-16. https://doi.org/10.1046/j.0962-1083.2001.01418.x
  33. Zeigler, R. S., Cuoc, L. X., Scott, R. P., Bernardo, M. A., Chen, D. H., Valent, B. and Nelson, R. J. 1995. The relationship between lineage and virulence in Pyricularia grisea in the Philippines. Phytopathology 85:443-451. https://doi.org/10.1094/Phyto-85-443
  34. Zheng, Y., Zhang, G., Lin, F. C., Wang, Z. H., Jin, G. L., Yang, L., Wang, Y., Chen, X., Xu, Z. H., Zhao, X. Q., Wang, H. K., Lu, J. P., Lu, G. D. and Wu, W. R. 2008. Development of microsatellite markers and construction of genetic map in rice blast pathogen Magnaporthe grisea. Fungal Genet. Biol. 45:1340-1347. https://doi.org/10.1016/j.fgb.2008.07.012
  35. Zhu, Y. Y., Chen, H. R., Fan, J. H., Wang, Y. Y., Li, Y., Chen, J. B., Fan, J. X., Yang, S. S., Hu, L. P., Leung, H., Mew, T. W., Teng, P. S., Wang, Z. H. and Mundt, C. C. 2000. Genetic diversity and disease control in rice. Nature 406:718-722. https://doi.org/10.1038/35021046

Cited by

  1. Molecular Diversity and Mating Type Distribution of the Rice Blast Pathogen Magnaporthe oryzae in North-East and Eastern India vol.55, pp.1, 2015, https://doi.org/10.1007/s12088-014-0504-6
  2. Genetic diversity and pathogenicity dynamics of Magnaporthe oryzae in the Wuling Mountain area of China pp.1573-8469, 2019, https://doi.org/10.1007/s10658-018-1587-4