DOI QR코드

DOI QR Code

특정용제 Target 형 활성금속첨착 활성탄소섬유의 개발

Development of Metal Loaded Activated Carbon Fiber for Eliminating Targeted VOCs Originated from Solvent

  • 투고 : 2012.11.28
  • 심사 : 2013.01.10
  • 발행 : 2013.01.30

초록

기존 흡착제들보다 우수한 흡착성능을 확보하고, 특히 특정한 용제에 대한 흡착성능을 극대화하기 위하여 $1,100m^2/g$의 비표면적을 갖는 활성탄소섬유를 기본흡착제로 적용하였고, 여기에 활성금속을 첨착시켜 흡착성능과 선택성을 제고하고자 하였다. 활성금속은 screening 연구를 수행하여 최종적으로 Cu, Cr을 선정하였으며, 활성금속첨착 활성탄소섬유의 제조변수는 제조온도, 제조시간, 활성금속의 종류이었다. 물성측정 및 흡착반응실험을 통하여 금속을 $100^{\circ}C$에서 5시간 동안 첨착하였을 경우 acetone gas 흡착성능이 가장 높게 나타났으며, 기존 활성탄소섬유보다 2배 이상의 높은 흡착성능을 확인하였다. 한편, 활성금속첨착 활성탄소섬유의 확산 및 흡착에 필요한 최소 접촉시간은 최소한 0.5초 이상은 유지해야 함을 확인할 수 있었다.

To acquire enhanced adsorption capacity for especially targeted VOCs, activated carbon fiber of which surface area was $1,100m^2/g$ was selected and active metals were loaded. After screening study, Cr and Cu were selected as a base metal for improving adsorption capacity of activated carbon fiber. For acquiring better performance, metal loading, loading temperature, loading hours and kinds of loaded metals were changed as preparing variables. Properties measurement and adsorption capacity evaluation were performed. We found that the best conditions for metal loading were 5 hours loading at $100^{\circ}C$ and the adsorption capacity was enhanced almost double. Also we confirmed that more than 0.5 seconds contact time is needed for best adsorbate diffusion and adsorption over activated carbon fiber.

키워드

참고문헌

  1. Kim, J, D., Kim, J, H., Kim, C, B. and Park, Y, T., "Manufacture and Adsorption Characteristics of Coconut based Impregnated Activated Carbon for Toxic Gas," KSEE Spring Academic Research Conference, KAIST, 1333-1334(2003).
  2. Moon, S, H. and Shim, J, W., "Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition," J. Kor. Soc. Environ. Eng., 27(6), 614- 619(2005).
  3. Kim, H, S., Jang, H, S., No, T, M., Jo, S, D. and Park, Y, S., "Adsorption Characteristics of Volatile Organic Compounds on Activated Carbon Fiber," KSEE Fall Academic Research Conference Paper Abstracts, 575-576(1998).
  4. Sakoda, A., Suzuki, M., Hirai, R. and Kawazoe, K., "Trihalomethane adsorption on activated carbon fibers," Water Res., 25(2), 219-225(1991). https://doi.org/10.1016/0043-1354(91)90032-L
  5. Miura, K., "Performance of molecular sieving carbon with controlled micropores," Catal. Soc. Jpn., 41(1), 25-30(1999).
  6. Verma, S. K. and Walker, P. L. Jr., "Alteration of molecular sieving properties of microporous carbons by heat treatment and carbon gasification," Carbon, 28(1), 175-184(1990). https://doi.org/10.1016/0008-6223(90)90111-B
  7. Hu, Z. and Vansant, E. F., "Carbon molecular sieves produced from walnut shell," Carbon, 33(5), 561-567(1995). https://doi.org/10.1016/0008-6223(94)00141-L
  8. Kawabuchi, Y., Kawano, S. and Mochida, I., "Molecular sieving selectivity of active carbons and active carbon fibers improved by chemical vapour deposition of benzene," Carbon, 34(6), 711-717(1996). https://doi.org/10.1016/0008-6223(95)00173-5
  9. Ryu, S. K., "Porosity of Activated Carbon Fibers," High Temperature-High Pressure, 22(4), 345-354(1990).
  10. Kawabuchi, Y., Kishino M., Kawano, S., Whitehurst, D. D. and Mochida, I., "Carbon deposition from benzene and cyclohexane onto active carbon fiber to control its pore size," Langmuir, 12(17), 4281-4285(1996). https://doi.org/10.1021/la960292a