DOI QR코드

DOI QR Code

활성탄에 의한 페놀 흡착의 열역학적 연구

Thermodynamic Analysis of Phenol Adsorption by Powdered Activated Carbon

  • 김환익 (경남과학기술대학교 환경공학과 녹색기술연구소) ;
  • 이명은 (경남과학기술대학교 환경공학과 녹색기술연구소) ;
  • 강석태 (경희대학교 토목공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과 녹색기술연구소)
  • Kim, Hwanik (Department of Environmental Engineering Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Lee, Myoung-Eun (Department of Environmental Engineering Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Kang, Seoktae (Department of Civil Engineering, Kyunghee University) ;
  • Chung, Jae-Woo (Department of Environmental Engineering Green Technology Institute, Gyeongnam National University of Science and Technology)
  • 투고 : 2012.09.18
  • 심사 : 2013.03.13
  • 발행 : 2013.03.30

초록

분말활성탄에 의한 페놀흡착의 속도론, 등온흡착, 열역학적 특성을 규명하기 위해 회분식 실험을 수행하였다. 흡착실험에서 얻어진 데이터에 2차 반응속도 모델을 적용한 결과, 상관계수($R^2$)의 값이 0.999 이상으로 실험값과 이론적 예측값이 잘 일치하였다. 흡착반응의 속도상수($k_2$)는 흡착제 투입량에 따라 0.55~19.81 mg $mg^{-1}min^{-1}$의 범위를 가지는 것으로 나타났다. 페놀의 등온흡착 특성은 Langmuir 등온 흡착 모델을 따르는 것으로 나타나 페놀이 활성탄 표면에 단층으로 균일하게 흡착되는 것을 알 수 있었다. 283.15~323.15 K의 온도범위에서 열역학적 특성을 평가한 결과, 흡착반응의 활성화에너지는 17.44 kJ $mol^{-1}$, 표준자유에너지변화는 -2.89~-2.14 kJ $mol^{-1}$, 엔탈피 변화는 -8.26 kJ $mol^{-1}$, 엔트로피 변화는 -18.94 J $mol^{-1}K^{-1}$인 것으로 나타났다. 본 연구의 결과는 활성탄에 의한 페놀흡착은 Langmuir 방식의 물리적 흡착이고 자발적이며 발열반응임을 보여준다.

The adsorption characteristics of phenol by the powdered activated carbon (PAC) were investigated by series of batch experiments. The pseudo-second-order model described the adsorption kinetics adequately with correlation coefficients over 0.999, indicating chemical adsorption as the rate-limiting step. The kinetic rate constants were from 0.55 to 19.81 mg $mg^{-1}min^{-1}$. The adsorption isotherm followed the Langmuir isotherm, indicating the homogeneous mono-layer adsorption onto the surface of the adsorbent. The values of activation energy, enthalpy and entropy were 17.44 kJ $mol^{-1}$, -8.26 kJ $mol^{-1}$ and -18.94 J $mol^{-1}K^{-1}$, respectively. The Gibbs free energy was in the range of -2.89~-2.14 kJ $mol^{-1}$. The results show that the phenol adsorption is physical, spontaneous and exothermic reaction.

키워드

참고문헌

  1. Liu, Q.-S., Zheng, T., Wang, P., Jiang, J.-P. and Li, N., "Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers," Chem. Eng. J., 157, 348-356(2010). https://doi.org/10.1016/j.cej.2009.11.013
  2. Dabrowski, A., Podkoscielny, P., Hubicki, Z. and Barczak, M., "Adsorption of phenolic compounds by activated carbon-a critical review," Chemosphere, 58(8), 1049-1070(2005). https://doi.org/10.1016/j.chemosphere.2004.09.067
  3. Yu, M.-R., Yang, J.-K. and Chang, Y.-Y., "As(III) oxidation and phenol adsorption by the activated carbon impregnated with Mn oxide," J. Kor. Soc. Environ. Eng., 30(4), 423-429 (2008).
  4. Suresh, S., Srivastava, V. C. and Mishra, I. M., "Adsorptive removal of phenol from binary aqueous solution with aniline and 4-nitrophenol by granular activated carbon," Chem. Eng. J., 171(3), 997-1003(2011). https://doi.org/10.1016/j.cej.2011.04.050
  5. Kim, W.-G. and Lee, S.-M., "Phenol removal using horseradish peroxidase (HRP)-mediated polymerization reaction in saturated porous media," J. Kor. Soc. Environ. Eng., 30(10), 984-991(2008).
  6. Beker, U., Ganbold, B., Dertli, H. and Gülbayir, D. D., "Adsorption of phenol by activated carbon: Influence of activation methods and solution pH," Energy Conversion Manage., 51(2), 235-240(2010). https://doi.org/10.1016/j.enconman.2009.08.035
  7. Jung, M. W., Ahn, K. H., Lee, Y., Kim, K. P., Rhee, J. S., Park, J. T. and Paeng, K. J., "Adsorption characteristics of phenol and chloro phenols on granular activated carbons (GAC)," Micro. Chem. J., 70(2), 123-131(2001). https://doi.org/10.1016/S0026-265X(01)00109-6
  8. Richard, D., Núñez, M. L. D. and Schweich, D., "Adsorption of complex phenolic compounds on active charcoal: Adsorption capacity and isotherms," Chem. Eng. J., 148(1), 1-7 (2009). https://doi.org/10.1016/j.cej.2008.07.023
  9. Valderrama, C., Barios, J. I., Caetano, M., Farran, A., Cortina, J. L., "Kinetic evaluation of phenol/aniline mixtures adsorption from aqueous solutions onto activated carbon and hypercrosslinked polymeric resin (MN200)," Reac. Funct. Polym., 70(3), 142-150(2010). https://doi.org/10.1016/j.reactfunctpolym.2009.11.003
  10. Tseng, R.-L., Wu, K.-T., Wu, F.-C. and Juang, R.-S., "Kinetic studies on the adsorption of phenol, 4-chlorophenol, and 2,4-dichlorophenol from water using activated carbons," J. Environ. Manage., 91(11), 2208-2214(2010). https://doi.org/10.1016/j.jenvman.2010.05.018
  11. Kumar, A. Kumar, S., Kumar, S. and Gupta, D. V., "Adsorption of phenol and 4-nitrophenol on granular activated carbon in basal salt medium: Equilibrium and kinetics," J. Hazard. Mater., 147(1-2), 155-166(2007). https://doi.org/10.1016/j.jhazmat.2006.12.062
  12. Huang, X., Gao, N. and Zhang, Q., "Thermodynamics and kinetics of cadmium adsorption onto oxidized granular activated carbon," J. Environ. Sci., 19(11), 1287-1292(2007). https://doi.org/10.1016/S1001-0742(07)60210-1
  13. Lee, J.-J., "Study on adsorption characteristics of erythrosine dye from aqueous solution using activated carbon," Appl. Chem. Eng., 22(2), 224-229(2011).
  14. Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E., "Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products," J. Environ. Manage., 96, 35-42(2012). https://doi.org/10.1016/j.jenvman.2011.10.010
  15. Zou, W., Han, R., Chen, Z., Jinghua, Z. and Shi, J., "Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutio ns using manganese oxide coated zeolite in batch mode," Colloid. Surf. A: Physicochem. Eng. Aspects, 279(1-3), 238- 246(2006). https://doi.org/10.1016/j.colsurfa.2006.01.008
  16. Hameed, B. H., Din, A. T. M. and Ahmad, A. L., "Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies," J. Hazard. Mater., 141(3), 819-825(2007). https://doi.org/10.1016/j.jhazmat.2006.07.049
  17. Aksu, Z., "Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of lead(II) ions onto Chlorella vulgaris," Proc. Biochem., 38, 89-99 (2002). https://doi.org/10.1016/S0032-9592(02)00051-1
  18. Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P. and Verstraete, W., "Removal of PCBs from wastewater using fly ash," Chemosphere, 53(6), 655-665(2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  19. Unlu, N. and Ersoz, M., "Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions," J. Hazard. Mater., 136(2), 272-280(2006). https://doi.org/10.1016/j.jhazmat.2005.12.013
  20. Lyubchik, S. I., Lyubchik, A. I., Galushko, O. L., Tikhonova, L. P., Vital, J., Fonseca, I. F. and Lyubchik, S. B., "Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes," Colloid. Surf. A: Physicochem. Eng. Aspects, 242, 151-158(2004). https://doi.org/10.1016/j.colsurfa.2004.04.066

피인용 문헌

  1. Phenol Removal by Ozone-Activated Carbon Hybrid Process vol.36, pp.5, 2014, https://doi.org/10.4491/KSEE.2014.36.5.311
  2. Phenol adsorption on surface-functionalized iron oxide nanoparticles: modeling of the kinetics, isotherm, and mechanism vol.18, pp.6, 2016, https://doi.org/10.1007/s11051-016-3478-y
  3. Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent vol.39, pp.1, 2017, https://doi.org/10.4491/KSEE.2017.39.1.26
  4. Effect of Operating Parameters on Methyl Orange Removal in Catalytic Ozonation vol.39, pp.7, 2017, https://doi.org/10.4491/KSEE.2017.39.7.412