DOI QR코드

DOI QR Code

실험실 조건에서 붕어마름의 수질개선 효과 분석 - 영양염류 제거 효율을 중심으로

Analysis of Water Quality Improvement of Ceratophyllum demersum under Laboratory Condition - by Nutrients Removal Efficiency

  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 주진철 (한국건설기술연구원 환경연구실) ;
  • 주원정 (서울대학교 건설환경공학부) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 오주현 (한국건설기술연구원 환경연구실) ;
  • 송호면 (한국건설기술연구원 환경연구실)
  • Ahn, Chang Hyuk (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Joo, Jin Chul (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Joo, Won Jung (Department of Civil & Environmental Engineering Seoul National University) ;
  • Ahn, Hosang (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Lee, Saeromi (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Oh, Ju Hyun (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Song, Ho Myeon (Construction Environment Research Division, Korea Institute of Construction Technology)
  • 투고 : 2012.11.21
  • 심사 : 2013.04.26
  • 발행 : 2013.04.30

초록

침수식물인 Ceratophyllum demersum (C. demersum)의 영양염류 제거 효율과 남조류 성장 억제 능력을 평가하기 위해 총 6개의 반응조에서 9일간 회분식 실험을 실시하였다. 실험이 시작되고 약 84 hr 후 C. demersum는 pH, DO에 대한 안정적인 일주기 경향을 보였다. 영양염류인 $NH_3{^+}$, $NO_3{^-}$, $PO{_4}^{3-}$를 대상으로 저감률을 검토한 결과 실험초기부터 9일간 지속적인 감소를 보였고 특히 24 hr 이내에서 빠른 감소를 나타내었다. C. demersum의 단위면적당 생체량과 영양염류 제거율 사이에 높은 상관관계($r^2{\geq}0.96$, p<0.001)가 도출되었으며, 피복도가 높을수록 오염물 저감 효율이 큰 것으로 나타났다. 하지만 높은 밀도의 반응조에서는 C. demersum의 활성화 차이가 있었으며, 그럼에도 불구하고 수질정화 효과가 나타난 것은 침수식물에 존재하는 부착조류나 미생물의 영향이 큰 것으로 여겨진다. Microcystis aeruginosa (M. aeruginosa)는 C. demersum의 생장밀도 2,500 g $fw/m^2$ (피복도 100%) 조건에서 성장률 0.31 /day를 보였으나 대조구는 0.47 /day을 나타내었다. 세포수 비교에서는 실험구보다 대조구가 약 1.7배 높게 나타나 C. demersum의 남조류 성장 억제 능력을 시사하였다.

To evaluate the ability of the submerged plant, Ceratophyllum demersum's (C. demersum) to remove nutrients and to inhibit growth of cyanobacteria, a total of 6 mesocosms were conducted in a batch reactor for 9 days. From the 84 hr of the experiment, C. demersum was stabilized and showed daily cycle trends according to changes in pH and DO levels. The concentration of nutrients, $NH_3{^+}$, $NO_3{^-}$ and $PO_4{^3}$ continuously decreased until 9 days of the experiment, with the rapid decrease in nutrient concentration for the first 24 hours. High correlation coefficient ($r^2{\geq}0.96$, p<0.001) between the amount of C. demersum's biomass per unit area and the nutrients removal level were derived, and greater C. demersum's biomass per unit area showed higher removal efficiency of nutrients. However, there were differences in the C. demersum's activity level between batch reactors with higher and similar density of the C. demersum, but nonetheless water purification effect appears to have a significant influence due to attached algae and microorganisms. The growth rate of harmful cyanobacteria, Microcystis aeruginosa (M. aeruginosa) with C. demersum's density of 2,500 g $fw/m^2$ (100% of cover degree) was 0.31 /day, compared to the growth rate of 0.47 /day for the control group (0% of cover degree). In terms of number of cells, the control group had 1.7 times higher number of cells than the experimental group, proving that C. demersum has the ability to inhibit the growth of harmful cyanobacteria.

키워드

참고문헌

  1. Kadlec, R. H. and Knight, R. L., "Treatment Wetlands," CRC Press/Lewis Publishers, BocaRaton, FL, p. 893(1996).
  2. Knight, R. L., Gu, B., Clarke, R. A. and Newman, J. M., "Long term phosphorus removal in Florida aquatic systems dominated by submerged aquatic vegetation," Ecol. Eng., 20, 45-63(2003). https://doi.org/10.1016/S0925-8574(03)00003-X
  3. Yi, Y. M., Lee, S. M. and Sung, K., "Effect of submerged plants on water environment and nutrient reduction in a wetland," J. Kor. Soc. Water Environ., 26(1), 19-27(2010).
  4. Shin, H., Kim, Y., Cho, K. H. and Choi, H. K., "Relationship between the distribution of hydrophytes and water quality in asan city, Korea with special reference to submerged hydrophytes," Kor. Soc. Limnol., 30(4), 423-429(1997).
  5. Horn, A. and J. Goldman, C. R., "Limnology," 2nd edition, ISBN 0-07-113359-3(1994).
  6. Bal, K., Struyf, E., and Vereecken, H., "How do macrophyte distribution patterns affect hydraulic resistances?," Ecol. Eng., 37, 529-533(2011). https://doi.org/10.1016/j.ecoleng.2010.12.018
  7. Scheffer, M., Hosper, S. H., Meijer, M. L., Jeppesen, E. and Moss, B., "Alternative equi-libria in shallow Lakes Trends," Ecol. Evol., 8, 275-279(1993). https://doi.org/10.1016/0169-5347(93)90254-M
  8. Van Donj, E. and kilham, S. S., "Temperature effects on silicon and phosphorus-limited growth and competitive interations among tree diatoms," J. Phycol., 26, 40-50(1990). https://doi.org/10.1111/j.0022-3646.1990.00040.x
  9. Dai, Y., Jia, C., Liang, W., Hu, S. and Wu. Z., "Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage," Ecol. Eng., 40, 113-116(2012). https://doi.org/10.1016/j.ecoleng.2011.12.023
  10. Farve, M., Harriss, W., Dierberg, F. and Portier, K., "Association between phosphorus and suspended silids in Everglades treatment wetland dominated by submerged aquatic vegetation," Wetl. Ecol. Manage., 12, 365-375(2004). https://doi.org/10.1007/s11273-004-4447-2
  11. Kanabkaew, T. and Puetpaiboon, U., "Aquatic plants for domestic wastewater treatment: Lotus (Nelumbo nucifera) and Hydrilla (Hydrilla verticillata) systems," Songklanakarin J. Sci. Technol., 26(5), 749-756(2004).
  12. Nakai, S., Inoue, Y., Hosomi, M. and Murakami, A., "Myriophyllum spicatum-released allelopathic polyphenols inhibithing growth of blue-green algae Microcystis aeruginosa," Water Res., 34, 3026-3032(2000). https://doi.org/10.1016/S0043-1354(00)00039-7
  13. Shin, J. K. and Cho, K. J., "Distribution and population dynamics of Microcystis (Cyanophyta) in the Nakdong River," Algae, 12(4), 283-2903(1997).
  14. Shin, J. K. and Cho, K. J., "Water quality assessment by algal growth potential (AGP) in the Naktong River," Kor. Soc. Limnol., 32(4), 349-357(1999).
  15. APHA, AWWA, WEF, "Standard methods for the examination of water and wastewater," 18th ed. American Public Health Association, Washington, DC(1992).
  16. Claesson, A. and A. Forsberg., "Algal assay procedure with one or five species," Verh. Internat. Verein. Limnol, 21, 21-30(1978).
  17. Seo, S. K., Joo, J. C., Song, H. M. and Oh, H. J., "Evaluation of feasibility for recreation water usage based on algal growth potential test for effluent from various wastewater reclamation and reuse plants," J. Kor. Soc. Water Sci. Technol., 18(2), 93-103(2010).
  18. Gaoa, J., Xionga, Z., Zhangb, J., Zhanga, W. and Mbaa, F. O., "Phosphorus removal from water of eutrophic Lake onghu by five submerged macrophytes," Desalination, 242, 193- 204(2009). https://doi.org/10.1016/j.desal.2008.04.006
  19. Dierberga, F. E., DeBuska, T. A., Jacksona, S. D., Chimneyb, M. J. and Pietrob. K., "Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading," Water Res., 36, 1409-1422(2002). https://doi.org/10.1016/S0043-1354(01)00354-2
  20. Shin, J. K. and Cho, K. J., "The impact on water quality from blue-green algae Microcystis of natural phytoplankton by algal assay," J. Kor. Environ., 9(3), 267-273(2000).
  21. Komarek, J., "A review of water-bloom forming Microcystis species, with regard to populations from Japan," Algological Studies, 64, 115-127(1991).
  22. Watanabe, M., "Isolation, cultivation and classification of bloom- forming Microcystis in Japan," CRC Press, Boca Raton, London, 13-34(1996).
  23. Wu, Y., Hec, J., Hu, Z., Yanga, L. and Zhangd, N., "Removal of UV254nm matter and nutrients from a photobioreactorwetland system," J. Hazard. Mater., 194, 1-6(2011). https://doi.org/10.1016/j.jhazmat.2010.10.096
  24. Choi, M. J., Byeon, M. S., Park, H. K., Jeon, N. H., Yoon, S. H. and Kong, D. S., "The growth and nutrient removal efficiency of hydrophytes at an artificial vegetation island, Lake Paldang," J. Kor. Soc. Water Environ., 23(3), 348-355 (2007).
  25. Lee, G. J. and Sung, K., "Evaluation of the nutrient uptakes of floating and submerged plants under experimental conditions," J. Kor. Soc. Water Environ., 28(1), 71-77(2012).
  26. Herdman, M., Castenholz, R. W., Iteman I. and Rippka, R., "Form-genus X. Microcystis. In Bergey's Manual of Systematic Bacteriology," 2nd edition, Vol. 1, New York: Springer- Verlag(2001).

피인용 문헌

  1. Evaluation of Correlation between Chlorophyll-a and Multiple Parameters by Multiple Linear Regression Analysis vol.37, pp.5, 2015, https://doi.org/10.4491/KSEE.2015.37.5.253