DOI QR코드

DOI QR Code

오존에 의한 전처리가 활성탄소섬유 화학적 표면개질에 미치는 영향

Effect of Pre-Treatment by Ozone on Chemical Surface Modification of Activated Carbon Fiber

  • 장정희 (고등기술연구원 플랜트엔지니어링본부) ;
  • 한기보 (고등기술연구원 플랜트엔지니어링본부) ;
  • 김호 (고등기술연구원 플랜트엔지니어링본부)
  • Jang, Jung Hee (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Han, Gi Bo (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Kim, Ho (Plant Engineering Center, Institute for Advanced Engineering)
  • 투고 : 2013.04.15
  • 심사 : 2013.05.27
  • 발행 : 2013.06.30

초록

활성탄소섬유(Activated carbon fiber, ACF)의 비표면적을 향상시키는 대표적인 방법은 알칼리금속을 이용한 화학적 활성화(Chemical activation, CA)와 산화제를 이용한 표면처리(Surface treatment, ST)방법이 있다. 알칼리금속을 이용한 CA 공정은 열처리 과정에서 알칼리금속의 화학반응에 의하여 미세기공이 발달되며, ST 공정은 산화제의 산화력에 의하여 표면의 미세기공을 발달시킨다. 본 연구에서는 대표적인 표면개질 방법인 CA 공정의 효과를 증대하기 위하여 전처리로 ST 공정을 수행하였으며, ST 공정 유무에 따라 CA된 ACF의 특성변화를 관찰하였다. ST 및 CA 유무에 따른 ACF 특성을 조사하기 위하여 무게변화, FT-IR, TGA, 원소분석을 수행하였으며, 대표적인 VOC물질인 톨루엔을 이용하여 흡착특성을 평가하였다. 실험결과 초기 raw ACF의 비표면적과 톨루엔 흡착량은 각각 1,483 $m^2/g$, 0.22 $g_{-Tol.}/g_{-ACF}$였으며, CA 처리시 1,998 $m^2/g$, 0.27 $g_{-Tol.}/g_{-ACF}$로 증가하였고, ST된 ACF를 CA 처리한 경우 2,743 $m^2/g$, 0.37 $g_{-Tol.}/g_{-ACF}$로 증가하였다. 본 연구를 통하여 ST 및 CA 결합공정을 통한 ACF의 표면특성을 증가를 확인하였다.

To increase specific surface property of activated carbon fiber(ACF), chemical activation(CA) using alkali metals and surface treatment(ST) using oxidant was widely used. The CA and ST process developed micro-pore on the surface of ACF by chemical reaction of the alkali metals and oxidative of oxidant, respectively. To improve the efficiency of CA process for developing micro-pores on the surface of ACF, the ST process was adopted as an pre-treatment method. After treatment of ST process, ACF properties was investigated depending on the ST pre-treatment process. FT-IR, TG and elemental analysis of the ACF are carried out, and an adsorption property of ACF was also evaluated using toluene(which in typical volatile organic matter). Once the single CA process is used, the surface area and adsorption capacity of ACF were increased from 1,483 to 1,988 $m^2/g$ and from 0.22 to 0.27 $g_{-Tol.}/g_{-ACF}$, respectively. On the other hands, once the ST and CA processes are used successively, the surface area and adsorption capacity of ACF are greatly increase(where the surface area is 2,743 $m^2/g$ and the adsorption capacity is 0.37 $g_{-Tol.}/g_{-ACF}$). It indicates that the combined process of ST and CA can improve the surface process properties of ACF.

키워드

참고문헌

  1. Ao, C. H., Lee, S. C., Mak, C. L. and Chan, L. Y., "Photodegradation of volatile organic compounds (VOCs) and NO for indoor air purification using $TiO_2$: promotion versus inhibition effect of NO," Appl. Catal. B: Environ., 42, 119-129(2003). https://doi.org/10.1016/S0926-3373(02)00219-9
  2. Francke, K. P., Miessner, H. and Rudolph, R., Plasma "catalytic processes for environmental problems," Catal. Today, 59, 411-416(2000). https://doi.org/10.1016/S0920-5861(00)00306-0
  3. Kim, J.-C., "Trends and Control Technologies of Volatile Organic Compound," J. Kor. Soc. Atmos. Environ., 22(6), 743-757(2006).
  4. Zhang, S., Shao, T., Kose, H. S. and Karanfil, T., "Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes," Environ. Sci. Technol., 44(16), 6377-6383(2010). https://doi.org/10.1021/es100874y
  5. Cheng, T., Y. Jiang, Y. Zhang, and S. Liu, "Prediction of breakthrough curves for adsorption on activated carbon fibers in a fixed bed," Carbon, 42, 3081-3085(2004). https://doi.org/10.1016/j.carbon.2004.07.021
  6. Das, D., V. Gaur, and N. Verma, "Removal of volatile organic compound by activated carbon fibre," Carbon, 42, 2949-2962(2004). https://doi.org/10.1016/j.carbon.2004.07.008
  7. Dwivedi, P., V. Gaur, A. Sharma, and N. Verma, "Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber," Sep. Purific. Technol., 39, 23-37(2004). https://doi.org/10.1016/j.seppur.2003.12.016
  8. Navarri, P., D. Marchal, and A. Ginestet, "Activated carbon fibre materials for VOC removal," Filtrat. + Sep., Jan./Feb., 34-40(2001).
  9. Lee, S.-Y., and Park, S.-J., "Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors," J. Solid State Chem., 194, 307-312(2012). https://doi.org/10.1016/j.jssc.2012.05.027
  10. Jimenez, V., Ramirez-Lucas, A. Sanchez, P., Valverde, J. L. and Romero, A., "Hydrogen storage in different carbon materials: Influence of the porosity development by chemical activation," Appl. Surf. Sci., 258(7), 2498-2509(2012). https://doi.org/10.1016/j.apsusc.2011.10.080
  11. Chiang, H. L., Chiang, P. C. and Huang, C. P., "Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene," Chemosphere, (2002).
  12. Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W. and Ferreira, P. J., et al., "Carbon-Based Supercapacitors Produced by Activation of Graphene," Sci., 332(6), 1537 (2011). https://doi.org/10.1126/science.1200770
  13. Li, Q. and Zhang, W. Study on Pan-Based Activated Carbon Fiber Prepared by KOH Activation Method (pp. 1-4). Presented at the Power and Energy Engineering Conference, 2009. APPEEC (2009).
  14. Lillo-Rodenas, M., Cazorla-Amoros, D. and Linares-Solano, A., "Understanding chemical reactions between carbons and NaOH and KOH: An insight into the chemical activation mechanism," Carbon, 41(2), 267-275(2003). https://doi.org/10.1016/S0008-6223(02)00279-8
  15. Macia-Agullo, J. A., Moore, B. C., Cazorla-Amoros, D. and Linares-Solano, A. "Influence of carbon fibres crystallinities on their chemical activation by KOH and NaOH," Microp. Mesop. Mater., 101(3), 397-405(2007). https://doi.org/10.1016/j.micromeso.2006.12.002
  16. El-Hendawy, A., "Influence of $HNO_3$ oxidation on the structure and adsorptive properties of corncob-based activated carbon," Carbon, 41(4), 713-722(2003). https://doi.org/10.1016/S0008-6223(03)00029-0
  17. Lozano-Castello, D., Lillo-Rodenas, M., Cazorla-Amoros, D. and Linares-Solano, A. "Preparation of activated carbons from Spanish anthracite: I. Activation by KOH," Carbon, 39(5), 741-749(2001). https://doi.org/10.1016/S0008-6223(00)00185-8
  18. Lillo-Rodenas, M., Lozano-Castello, D., Cazorla-Amoros, D. and Linares-Solano, A., "Preparation of activated carbons from Spanish anthracite: II. Activation by NaOH," Carbon, 39(5), 751-759(2001). https://doi.org/10.1016/S0008-6223(00)00186-X
  19. Mawhinney, D. and Yates, J., "FTIR study of the oxidation of amorphous carbon by ozone at 300 K-Direct COOH formation," Carbon, (2001).
  20. Shen, W. and Li, Z., "Surface Chemical Functional Groups Modification of Porous Carbon," Recent Patents Chem. Eng., (2008).
  21. Li, M., Boggs, M., Beebe, T. P. and Huang, C. P. "Oxidation of single-walled carbon nanotubes in dilute aqueous solutions by ozone as affected by ultrasound," Carbon, (2008).
  22. SANCHEZPOLO, M., "Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone," Carbon, 41(2), 303-307(2003). https://doi.org/10.1016/S0008-6223(02)00288-9
  23. Mawhinney, D. B., Naumenko, V., Kuznetsova, A., Yates, J. T., Liu, J. and Smalley, R. E., "Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K," J. Am. Chem. Soc., 122(10), 2383-2384(2000). https://doi.org/10.1021/ja994094s
  24. Raymundo-Pinero, E., Azais, P. and Cacciaguerra, T., "KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation," Carbon, (2005).
  25. Kundu, S., Wang, Y., Xia, W. and Muhler, M., "Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study," J. Phys. Chem. C, 112(43), 16869-16878(2008). https://doi.org/10.1021/jp804413a