DOI QR코드

DOI QR Code

DFT 계산을 활용한 Sulfonamide계 항생물질의 활성탄 흡착에 관한 연구

A Study on the Adsorption of Sulfonamide Antibiotics on Activated Carbon Using Density Functional Theory

  • Jo, Jun-Ho (Department of Environmental Engineering, Changwon National University) ;
  • Lim, Dong-Hee (Fuel Cell Research Center, Korea Institute of Science and Technology) ;
  • Seo, Gyu Tae (Department of Environmental Engineering, Changwon National University)
  • 투고 : 2013.04.30
  • 심사 : 2013.06.07
  • 발행 : 2013.07.30

초록

본 연구는 수계에 잔류된 미량오염물질이 활성탄 여과공정을 통해 제거되는 메커니즘을 파악하고자 입상활성탄(GAC)을 이용하여 sulfonamide계 항생물질(SAs)에 대한 흡착제거 실험 및 Density functional theory (DFT)를 활용한 흡착 모델링 계산을 수행하였다. 활성탄 흡착실험결과 1시간 및 24시간 동안의 흡착 제거율은 각각 68.4~90.7% 그리고 99.0~99.9%로 나타났으며, 두 가지 경우 모두 흡착 제거율의 크기는 sulfamethazine (SMZ) > sulfathiazole (STZ) > sulfamethoxazole (SMTZ)의 순으로 높게 나타났다. DFT 흡착 모델링 계산 결과에서는, graphene 모형에 대한 SAs의 결합 형태는 SAs의 공통부분인 4-aminobenzenesulfonamide 고리 부분을 통하여 안정된 흡착형태를 나타내었으며, SMTZ의 경우에는 반대쪽 고리인 3-methyl-1,2-oxazol-5-amine 고리 부분과의 결합이 우세한 것으로 나타났다. 또한 흡착물의 형태가 보존되는 흡착모형에서의 흡착에너지는 SMZ, STZ, 그리고 STMZ가 각각 -4.91, -4.64, 그리고 -4.62 eV로 나타났다(흡착에너지 강도: SMZ > STZ > STMZ). 이는 흡착제거실험에서 측정된 흡착제거율 크기와도 일치되는 경향을 나타낸다. 또한, SAs 물질이 분해되면서 흡착될 때 발생될 수 있는 구조상의 특성 변화에 대한 정보를 나타내었다.

The removal of sulfonamide antibiotics (SAs) by activated carbon was investigated by using granular activated carbon (GAC) tests and density functional theory (DFT) simulations. The GAC absorption tests show the removal efficiency of 68.4~90.7% and 99.0~99.9% in 1 and 24 hours, respectively. In both GAC tests, the removal efficiency of sulfamethazine (SMZ) was the highest followed by those of sulfathiazole (STZ) and sulfamethoxazole (SMTZ): SMZ > STZ > SMTZ. In DFT adsorption simulations, we found that the 4-aminobenzenesulfonamide parts of SMZ and STZ and the 3-methyl-1,2-oxazol-5-amine part of SMTZ are preferentially adsorbed on the edges of graphene model, provided that the adsorbates keep their structures without dissociation upon adsorption process. The adsorption energies of SMZ, STZ, and SMTZ are -4.91, -4.64, and -4.62 eV, respectively. This adsorption strength (SMZ > STZ > STMZ) agrees with the trend of the removal efficiency of SAs by GAC. In addition, dissociative adsorption configurations of SAs are discussed.

키워드

참고문헌

  1. Yang, S. W. and Kenneth, C., "Evolution of antibiotic occurrence in a river through pristine, urban andagricultural landscapes," Water Res., 37, 4645-4656(2003). https://doi.org/10.1016/S0043-1354(03)00399-3
  2. Maria, H.-F., Maria, T. G. and Francesc, V., "Occurrence and removal of pharmaceuticals and hormones through drinking water treatment," Water Res., 45, 1432-1442(2011). https://doi.org/10.1016/j.watres.2010.10.036
  3. Anne, L. B., William, A. A. and Kristopher, M., "Photochemical Fate of Sulfa Drugs in the Aquatic Environment: Sulfa Drugs Containing Five-Membered Heterocyclic Groups," Environ. Sci. Technol., 38, 3933-3040 (2004). https://doi.org/10.1021/es0353053
  4. Angela L. B., Daniel, D. S. and Diana, S. A., "Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA," Chemosphere, 64, 1963-1971(2007).
  5. Lee, G.-A., "The distribution of residual pharmaceuticals in water basin of Ulsan : Focused on Taewha River and Hoiya River," Kyungbook National University(2011).
  6. Kim., S. D., Cho, J. W., Kim, I. S., Brett, J. V. and Shane, A. S., "Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters," Water Res., 41, 1013-1021(2007). https://doi.org/10.1016/j.watres.2006.06.034
  7. Paul, W., Yoon, Y. M., Shane, S. and Eric, W., "Fate of Endocrine-Disruptor, Pharmaceutical, and Personal Care Product Chemicals during Simulated Drinking Water Treatment Processes," Environ. Sci. Technol., 39, 6649-6663(2005). https://doi.org/10.1021/es0484799
  8. Niina, M. V., Heli, H., Tuula, T. and Lief, K., "Occurrence of Pharmaceuticals in River Water and Their Elimination in a Pilot-Scale Drinking Water Treatment Plant," Environ. Sci. Technol., 41, 5077-5084(2007). https://doi.org/10.1021/es062720x
  9. Son, H.-J. and Jang, S.-H., "Occurrence of Residual Pharmaceuticals and Fate, Residue and Toxic Effect in Drinking Water Resources," J. Kor. Soc. Environ. Eng., 33(6), 453-479(2011). https://doi.org/10.4491/KSEE.2011.33.6.453
  10. Choi, K. J., Kim, S. G., Kim, C. W. and Kim, S. H., "Determination of antibiotic compounds in water by online SPELC/MSD," Chemosphere, 66, 977-984(2007). https://doi.org/10.1016/j.chemosphere.2006.07.037
  11. Kwon, J.-W., Environmental Residues and Fates of Sulfonamides and Tetracyclines, Chungnam National University (2011).
  12. Lim., D.-H, Ana, S. N. and Jennifer, W., "DFT Studies on the Interaction of Defective Graphene-Supported Fe and Al Nanoparticles," J. Phys. Chem. C, 115, 8961-8970(2011). https://doi.org/10.1021/jp2012914
  13. Kresse, G. and Hafner, J., "Ab initio molecular dynamics for liquid metals," Phys. Rev. B, 47, 558-561(1993). https://doi.org/10.1103/PhysRevB.47.558
  14. Blochl, P. E., "Projector augmented-wave method," Phys. Rev., B, 50, 17953-17979(1994). https://doi.org/10.1103/PhysRevB.50.17953
  15. John, P. P., Kieron, B. and Matthias, E., "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77, 3865-3868(1996). https://doi.org/10.1103/PhysRevLett.77.3865
  16. Peter, J. F., Harris, Z. L. and Kazu, S., "Imaging the atomic structure of activated carbon," J. Phys.: Condensed Matter, 20, 362201-362205(2008). https://doi.org/10.1088/0953-8984/20/36/362201
  17. Choi, K.-J., Kim., S.-G. and Kim, S.-H., "Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon," Environ. Technol., 29, 333-342(2008). https://doi.org/10.1080/09593330802102223
  18. Bihter, P. and Jennifer, W., "Understanding mercury binding on activated carbon," Carbon, 47, 2855-2864(2009). https://doi.org/10.1016/j.carbon.2009.06.029
  19. Erdem, S., Abby, K., Adam, D. J., Arindom, S., David, A., Thomas, F. J., Jennifer, W., "Mercury chemistry on brominated activated carbon," Fuel, 99, 188-196(2012). https://doi.org/10.1016/j.fuel.2012.04.036
  20. Jennifer, W., Erdem, S., Abby, K. and Lee, S.-S., "Heterogeneous Mercury Reaction Chemistry on Activated Carbon," J. Air Waste Manage. Assoc., 61, 418-426(2011). https://doi.org/10.3155/1047-3289.61.4.418
  21. Bihter, P., Michael, B., Amanda, L. and Jennifer, W., "Mercury Binding on Activated Carbon," Environ. Prog., 25, 319-326(2006). https://doi.org/10.1002/ep.10165
  22. http://www.ncbi.nlm.nih.gov/
  23. Weiben, Y., Fangfang, Z., Xiaoxu, X. and Yiping, L., "Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents," J. Colloid Int. Sci., 362, 503-509(2011). https://doi.org/10.1016/j.jcis.2011.06.071
  24. Choi., Y.-S., Electronic and atomic structures of carbon nanotube by gas adsorption, Sungkyunkwan University (2003).
  25. Son., H.-J., Jung., J.-M., Roh., J.-S. and Yu., P.-J., "Adsorption Characteristics of Sulfonamide Antibiotic Compounds in GAC Process," J. Kor. Soc. Environ. Eng., 30(4), 401-408(2008).
  26. Alexandra, G. G., Jose, J. M., O. and Manuel, F. R. P., "Catalytic ozonation of sulphamethoxazole in the presence of carbon materials : Catalytic performance and reaction pathways," J. Hazard. Mater., 239-240, 167-174(2012). https://doi.org/10.1016/j.jhazmat.2012.08.057