DOI QR코드

DOI QR Code

음폐수 이용 혐기성 소화의 내부 pH 조절에 따른 바이오가스 전환율 비교 및 미생물 군집도 분석

Influence of Performance and Microbial Community by Internal pH Control on Anaerobic Digestion of Food Waste Leachate

  • 윤여명 (한국과학기술원 건설 및 환경공학과) ;
  • 조시경 (한국과학기술원 건설 및 환경공학과) ;
  • 정다영 (한국과학기술원 건설 및 환경공학과) ;
  • 이은진 (한국과학기술원 건설 및 환경공학과) ;
  • 허관용 ((주)안나비니테즈) ;
  • 신동혁 ((주)안나비니테즈) ;
  • 이창규 (한국건설기술연구원 수자원.환경연구본부) ;
  • 신항식 (한국과학기술원 건설 및 환경공학과)
  • 투고 : 2013.07.18
  • 심사 : 2013.08.23
  • 발행 : 2013.08.30

초록

본 연구에서는 음폐수를 이용 낮은 유기물 부하율에서 소화조 내부 pH 조절 유무에 따른 소화조 운전의 바이오가스 발생량 및 미생물 군집도 변화에 대한 비교 분석했다. 그 결과, 내부 pH를 조절하지 않은 반응조는 pH, Free ammonia, Volatile fatty acid의 증가에 의한 반응조 안정성이 떨어짐에도 불구하고 내부 pH 조절 반응조와 비슷한 바이오가스 전환율을 보였다. 이는 미생물 군집도 분석 결과에 따르면 외부환경에 대한 내성이 강한 Methanosarcina sp.의 우점에 의해 반응조의 안정성을 유지할 수 있었던 것으로 나타났다.

In this study, the performance and microbial community of anaerobic digestion fed by food waste leachate at low organic loading rate were investigated with and without internal pH control. Experimental results show that similar biogas yield was achieved in both reactors regardless of increase in pH, the concentrations of free ammonia and volatile fatty acids in case of without internal pH controlled one. The results of a methanogenic community analysis by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis revealed that the apparent preponderance of Methanosarcina sp. could be one of reasons for the maintenance of reactor stability.

키워드

참고문헌

  1. Behera, S. K., Park, J. M., Kim, K. H. and Park, H. S., "Methane production from food waste leachate in laboratoryscale simulated landfill," Waste Manage., 30, 1502-1508 (2010). https://doi.org/10.1016/j.wasman.2010.02.028
  2. Shin, H. S., Han, S. K., Song, Y. C. and Lee, C. Y., "Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste," Water Res., 35, 3441-3447(2001). https://doi.org/10.1016/S0043-1354(01)00041-0
  3. Yenigün, O. and Demirel, B., "Ammonia inhibition in anaerobic digestion: A review," Proc. Biochem., 48, 901-911 (2013). https://doi.org/10.1016/j.procbio.2013.04.012
  4. Martin-Gonzalez, L., Font, X. and Vicent, T., "Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes," Biochem. Eng. J., 76, 1-5(2013). https://doi.org/10.1016/j.bej.2013.03.016
  5. Zhao, H., Li, J., Li, J., Yuan, X., Piao, R., Zhu, W., Li, H., Wang, X. and Cui, Z., "Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors," Bioresour. Technol., 140, 211-219 (2013). https://doi.org/10.1016/j.biortech.2013.04.027
  6. Ward, A. J, Hobbs, P. J., Holliman, P. J. and Jones, D. L., "Optimisation of the anaerobic digestion of agricultural resources," Bioresour. Technol., 99, 7928-7940(2008). https://doi.org/10.1016/j.biortech.2008.02.044
  7. Wang, Q., Peng, L. and Su, H., "The effect of a buffer function on the semi-continuous anaerobic digestion," Bioresour. Technol., 139, 43-49(2013). https://doi.org/10.1016/j.biortech.2013.04.006
  8. Duan, N., Dong, B., Wu, B. and Dai, X., "High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study," Bioresour. Technol., 104, 150-156(2012). https://doi.org/10.1016/j.biortech.2011.10.090
  9. Yun, Y. M., Jung, K. W., Kim, D. H., Oh, Y. K. and Shin, H. S., "Microalgal biomass as a feedstock for bio-hydrogen production," Int. J. Hydro. Energy, 37, 15533-15539(2012). https://doi.org/10.1016/j.ijhydene.2012.02.017
  10. Bouallagui, H., Lahdheb, H., Ben, Romdan, E., Rachdi, B. and Hamdi, M., "Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition," J. Environ. Manage., 90, 1844-1849(2009). https://doi.org/10.1016/j.jenvman.2008.12.002
  11. APHA., "Standard methods for the examination of water and wastewater," 20th ed. USA American Public Health Association, Washington, DC.(1998).
  12. Hansen, K. H., Angelidaki, I. and Ahring, B. K., "Anaerobic digestion of swine manure: inhibition by ammonia," Water Res., 32, 5-12(1998). https://doi.org/10.1016/S0043-1354(97)00201-7
  13. Wilson, C. A., Takacs, I., Wett, B., Murthy, S. N. and Novak, J. T., "The kinetics of process dependent ammonia inhibition of methanogenesis from acetic acid," Water Res., 19, 6247-6256(2012).
  14. Chen, Y., Cheng, J. J. and Creamer, K. S., "Inhibition of anaerobic digestion process: A review," Bioresour. Technol., 99, 4044-4064(2008). https://doi.org/10.1016/j.biortech.2007.01.057
  15. Jeanthon, C., L'Haridon, S., Reysenbach, A. L., Vernet, M., Messner, P., Sleytr, U. B. and Prieur, D., "Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent," Int. J. Syst. Bacteriol., 48, 913-919(1998). https://doi.org/10.1099/00207713-48-3-913
  16. Rea, S., Bowman, J. P., Popovski, S., Pimm, C. and Wright, A. D., "Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth," Int. J. Syst. Evol. Microbiol., 57, 450-456(2007). https://doi.org/10.1099/ijs.0.63984-0
  17. Takai, K., Nealson, K. H. and Horikoshi, K., "Methanotorris formicicus sp. nov., a novel extremely thermophilic, methaneproducing archaeon isolated from a black smoker chimney in the Central Indian Ridge," Int. J. Syst. Evol. Microbiol., 54, 1095-1100(2004). https://doi.org/10.1099/ijs.0.02887-0
  18. Miller, T. L. and Lin, C., "Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov.," Int. J. Syst. Evol. Microbiol., 52, 819-822 (2002). https://doi.org/10.1099/ijs.0.02022-0
  19. Patel, G. B. and Sprott, G. D., "Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov.," Int. J. Syst. Evol. Microbiol., 40, 79-82(1990).
  20. Nakamura, K., Takahashi, A., Mori, C., Tamaki, H., Mochimaru, H., Nakamura, K., Takamizawa, K. and Kamagata, Y., "Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field," Int. J. Syst. Evol. Microbiol., 63, 715-722(2013). https://doi.org/10.1099/ijs.0.041681-0
  21. Kamagata, Y., Kawasaki, H., Oyaizu, H., Nakamura, K., Mikami, E., Endo, G. and Yamasato, K., "Characterization of three thermophilic strains of Methanothrix ("Methanosaeta") thermophila sp. nov. and rejection of Methanothrix ("Methanosaeta") thermoacetophila," Int. J. syst. Bacterio., 42, 463-468(1992). https://doi.org/10.1099/00207713-42-3-463
  22. Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R. A., Martinez-Arias, R., Henne, A., Wiezer, A., Bäumer, S., Jacobi, C., Brüggemann, H., Lienard, T., Christmann, A., Bömeke, M., Steckel, S., Bhattacharyya, A., Lykidis, A., Overbeek, R., Klenk, H. P., Gunsalus, R. P., Fritz, H. J. and Gottschalk, G., "The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea," J. Mol. Microbiol. Biotechnol., 4, 453-461(2002).
  23. Ma, K., Liu, X. and Dong, X., "Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor," Int. J. Syst. Evol. Microbiol., 56, 127-131(2006). https://doi.org/10.1099/ijs.0.63887-0
  24. Cadillo-Quiroz, H., Yavitt, J. B. and Zinder, S. H., "Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland," Int. J. Syst. Evol. Microbiol., 59, 928-935(2009). https://doi.org/10.1099/ijs.0.006890-0
  25. Gonnerman, M. C., Benedict, M. N., Feist, A. M., Metcalf, W. W. and Price, N. D., "Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746," Biotechnol. J., In press(2013).
  26. Lyimo, T. J., Pol, A., Camp, H. J., Harhangi, H. R. and Vogels, G. D., "Methanosarcina semesiae sp. nov., a dimethylsulfide- utilizing methanogen from mangrove sediment," Int. J. Syst. Evol. Microbiol., 50, 171-178(2000). https://doi.org/10.1099/00207713-50-1-171
  27. Simankova, M. V., Parshina, S. N., Tourova, T. P., Kolganova, T. V., Zehnder, A. J. and Nozhevnikova, A. N., "Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments," Syst. Appl. Microbiol., 24, 362-367(2001). https://doi.org/10.1078/0723-2020-00058
  28. Demirel, B. and Scherer, P., "The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review," Rev. Environ. Sci. Bio/ Technol., 7, 173-190(2008). https://doi.org/10.1007/s11157-008-9131-1
  29. Boone, D. R., Whitman, W. B. and Rouviere, P., "Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis ecology, physiology, biochemistry & genetics," Chapman & Hall, New York, pp. 35-80(1993).
  30. Cho, S. K., Im, W. T., Kim, D. H. Kim, M. H., Shin, H. S. and Oh, S. E., "Dry anaerobic digestion of food waste under mesophilic conditions: Performance and methanogenic community analysis," Bioresour. Technol., 131, 210-217(2013). https://doi.org/10.1016/j.biortech.2012.12.100

피인용 문헌

  1. Methane Recovery from Food Waste Digestion Gas by Multi Stage Hollow Fiber Membrane vol.40, pp.5, 2018, https://doi.org/10.4491/KSEE.2018.40.5.217