DOI QR코드

DOI QR Code

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball

Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가

  • Oh, Ju Hyun (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Hosang (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Jang, Dae Gyu (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Ahn, Chang Hyuk (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Lee, Saeromi (Construction Environment Research Division, Korea Institute of Construction Technology) ;
  • Joo, Jin Chul (Construction Environment Research Division, Korea Institute of Construction Technology)
  • 오주현 (한국건설기술연구원 환경연구실) ;
  • 안호상 (한국건설기술연구원 환경연구실) ;
  • 장대규 (한국건설기술연구원 환경연구실) ;
  • 안창혁 (한국건설기술연구원 환경연구실) ;
  • 이새로미 (한국건설기술연구원 환경연구실) ;
  • 주진철 (한국건설기술연구원 환경연구실)
  • Received : 2013.08.12
  • Accepted : 2013.09.16
  • Published : 2013.09.30

Abstract

In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.

광촉매인 나노크기의 산화아연(ZnO)과 흡착기능의 지지체인 Laponite, 결합제인 poly vinyl alcohol (PVA)를 혼합하여 붕산(boric acid)과 가교반응(crosslinking)을 통해 흡착과 광분해가 동시에 발생하며 회수가 불필요한 nano-ZnO/Laponite/PVA (ZLP) 광촉매 흡착볼을 개발하였다. ZLP 광촉매 흡착볼 제작을 위한 최적의 배합비는 Nano-ZnO:Laponite:PVA:deionized water의 구성비가 3:1:1:16 (by weight)으로 도출되었으며, PVA가 붕산과의 가교결합을 통해서 다층의 망(mesh network)과 막(film)을 형성하여 Laponite의 팽윤과 ZnO의 탈리 현상을 억제하는 것으로 사료된다. 수중안정성을 개선하고 비표면적을 높이기 위한 최적의 건조방법은 microwave를 활용하는 방법이며, SEM과 TEM의 분석을 통해 다양한 크기(55~500 ${\mu}m$)의 공극(pore)이 분포하며 ZnO의 균질한 분포를 확인할 수가 있었다. 메틸렌블루 광분해 특성은 반응 초기(40분)에는 Laponite와 메틸렌블루의 이온결합에 따른 흡착제거가 주요 제거 기작이며, 메틸렌블루의 흡착이 포화상태에 도달 후 광분해를 통한 제거가 발생함을 확인하여 흡착과 광분해가 동시에 발생하여 수중에 용해된 메틸렌 블루를 효과적으로 제거할 수 있음을 확인하였다. 본 연구를 통해 짧은 시간에 흡착과 광분해가 동시에 진행되어 난분해성 오염물질을 효과적으로 제거하는 광촉매 흡착볼의 제작이 가능하며, 나노물질의 탈리로 인해 발생하는 환경 및 수용체에 미치는 위해성도 최소화 할 수 있을 것으로 판단된다.

Keywords

References

  1. Choi, W.-Y. and Lee, J.-S., "Principles and characteristics of photocatalysts," J. Air Clean Technol., 18(2), 1-8(2005).
  2. Chatterjee, D. and Dasgupta, S., "Visible light induced photocatalytic degradation of organic pollutants," J. Photochem. Photobiol. C: Photochem. Rev., 6(2-3), 186-205(2005).
  3. Chong, M. N., Jin, B., Chow, C. W. K. and Saint, C., "Recent developments in photocatalytic water treatment technology: A review," Water Res., 44(10), 2997-3027(2010). https://doi.org/10.1016/j.watres.2010.02.039
  4. Choi, K. H., Wang, K. K., Shin, E. P., Oh, S.L., Jung, J. S., Kim, H. K. and Kim, Y. R., "Water-soluble magnetic nanoparticles functionalized with photosensitizer for photocatalytic application," J. Physical Chem. C, 115(8), 3212-3219(2011). https://doi.org/10.1021/jp1085137
  5. Yang, L. Y., Dong, S. Y., Sun, J. H., Feng, J. L., Wu, Q. H. and Sun, S. P., "Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO-photocatalyst," J. Hazard. Mater., 179(2), 438-443(2010). https://doi.org/10.1016/j.jhazmat.2010.03.023
  6. Georgekutty, R., Seery, M. K. and Pillai, S. C., "A Highly Efficient Ag-ZnO Photocatalyst: Synthesis, Properties and Mechanism," J. Physical Chem. C, 112(35), 13563-13570 (2008). https://doi.org/10.1021/jp802729a
  7. Chen, C. C., "Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions," J. Molecular Catal. A: Chem., 264, 82-92(2007). https://doi.org/10.1016/j.molcata.2006.09.013
  8. Hariharan, C., "Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited," Appl. Catal. A: General, 304, 55-61(2006). https://doi.org/10.1016/j.apcata.2006.02.020
  9. Kim, P.-R., Son, D.-M., Lee, H.-N. and Kim, Y. H., "Synthesis, photoluminescence and thermal properties of laponite- X (X = Eu, Tb) phosphors," J. Kor. Crystal Growth Cryst. Technol., 19(4), 196-201(2009).
  10. Cummins, H. Z., "Liquid, glass, gel: The phases of colloidal Laponite," J. Non-Crystalline Solids, 353(41), 3891-3905 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.02.066
  11. Feng, J., Hu, X., Yue, P. L., Zhu, H. Y. and Lu, G. Q., "A novel laponite clay-based Fe nanocomposite and its photocatalytic activity in photo-assisted degradation of Orange II," Chem. Eng. Sci., 58(3-6), 679-685(2003). https://doi.org/10.1016/S0009-2509(02)00595-X
  12. Yin, Y., Li, J., Liu, Y. and Li, Z., "Starch Crosslinked with Poly(vinyl alcohol) by Boric Acid," J. Appl. Polym. Sci., 96(4), 1394-1397(2005). https://doi.org/10.1002/app.21569
  13. Wu, K. Y. A. and Wisecarver, K. D., "Cell Immobilization Using PVA Crosslinked with Boric Acid," Biotechnol. Bioeng., 39(4), 447-449(1992). https://doi.org/10.1002/bit.260390411
  14. Takei, T., Ikeda, K., Ijima, H., Yoshida, M. and Kawakami, K., "A comparison of sodium sulfate, sodium phosphate and boric acid for preparation of immobilized Pseudomonas putida F1 in poly (vinyl alcohol) beads," Polym. Bullet., 69(3), 363-373(2012). https://doi.org/10.1007/s00289-012-0756-4
  15. Shibayama, M., Sato, M., Kimura, Y., Fujiwara, H. and Nomura, S., "$^{11}B$ n.m.r. study on the reaction of poly (vinyl alcohol) with boric acid," Polym., 29(2), 336-340(1988). https://doi.org/10.1016/0032-3861(88)90343-6
  16. Zubov, V. P., Chikhacheva, I. P., Nikolaeva, E. I., Kapustin, D. V., Yagudaeva, E. Y. and Kubrakova, I. V., "Microwaveassisted synthesis of composite sorbents on the basis of silica modified by polyvinyl alcohol," Russ. J. Gen. Chem., 79(2), 191-194(2009). https://doi.org/10.1134/S1070363209020042
  17. Jeon, H.-Y., Park, Y.-M. and Mok, M.-S., "Assessment of Hydraulic Properties of Bentonite Swelling Agents by Blending with Additives," J. Kor. Geosynthetice Soc., 1(1), 43-51(2002).
  18. Joo, J. C., Shackelford, C. D. and Readon, K. F., "Modeling sorption of neutral organic compound in mixtures to simulated aquifer sorbents with pseudocompounds," J. Environ. Qual., 42(3), 852-860(2013). https://doi.org/10.2134/jeq2013.01.0025
  19. Turchi, C. S. and Ollis, D. F., "Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack," J. Catal., 122(1), 178-192(1990). https://doi.org/10.1016/0021-9517(90)90269-P
  20. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., "Photocatalytic degradation pathway of methylene blue in water," Appl. Catal. B: Environ., 31(2), 145-157(2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  21. Yun, S.-M., Kim, J. H., Jeong, E. G., Im, J. S. and Lee, Y.-S., "Methylene Blue Photodegradation Properties of Anatase/ brookite Hybrid $TiO_2$ Photocatalyst Prepared with Different Acid Catalysts," J. Kor. Soc. Ind. Eng. Chem., 22(1), 21-25(2011).
  22. Elaziouti, A. and Laouedj, N., "Kinetics on the Removal of Cationic Dyes from Aqueous Solutions over Maghnia Montmorillonite Adsorbent," J. Kor. Chem. Soc., 54(5), 603-610(2010). https://doi.org/10.5012/jkcs.2010.54.5.603
  23. Hwang, M.-J., Thanh, B. N. and Ryu, K.-S. "A Study on Photocatalytic Decomposition of Methylene Blue by Crystal Structures of Anatase/Rutile $TiO_2$," J. Kor. Chem. Soc., 23(2), 148-152(2012).

Cited by

  1. Evaluation of 1,1,2-trichloroethylene Removal Efficiency Using Composites of Nano-ZnO Photocatalyst and Various Organic Supports vol.36, pp.11, 2014, https://doi.org/10.4491/KSEE.2014.36.11.771