DOI QR코드

DOI QR Code

Performance of Electric Double Layers Capacitor Using Activated Carbon Materials from Rice Husk as Electrodes

  • Nguyen, Tuan Dung (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Ryu, Jae Kyung (Deptarment of Dental Technology, ShinHan University) ;
  • Bramhe, Sachin N. (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Kim, Taik-Nam (Department of Materials Science and Engineering, Graduate School of PaiChai University)
  • Received : 2013.10.05
  • Accepted : 2013.10.31
  • Published : 2013.11.27

Abstract

Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + $Na_2CO_3$), and a combination of (KOH + $K_2CO_3$) as the chemical activating reagents. The activated carbon with the highest surface area (around $2000m^2/g$) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.

Keywords

References

  1. B. E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum Pub. Co. New York (1999).
  2. A. Burke, J. Power Source, 91, 37 (2000). https://doi.org/10.1016/S0378-7753(00)00485-7
  3. H. Wang, J. Varghese and L. Pilon, Electrochimica Acta, 56, 6189 (2011). https://doi.org/10.1016/j.electacta.2011.03.140
  4. L. Wang, T. Morishita, M. Toyoda and M. Inagaki, Electrochimica Acta, 53, 882 (2007). https://doi.org/10.1016/j.electacta.2007.07.069
  5. L. Zhang, H. Liu, M. Wang and L. Chen, Carbon, 45, 1439 (2007). https://doi.org/10.1016/j.carbon.2007.03.030
  6. H. Shi, Electrochimica Acta, 41, 1633-1639 (1996). https://doi.org/10.1016/0013-4686(95)00416-5
  7. H. Teng, Y. J. Chang and C. T. Hsieh, Carbon, 39, 1981 (2001). https://doi.org/10.1016/S0008-6223(01)00027-6
  8. G. Salitra, A. Soffer, L. Eliad, Y. Cohen and Aurbach D. J. Electrochem. Soc., 147, 2486 (2000). https://doi.org/10.1149/1.1393557
  9. C. T. Hsieh and H. Teng, Carbon, 40, 667 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
  10. K. Y Foo and B. H Hameed, Bioresour. Technol., 102, 9814 (2011). https://doi.org/10.1016/j.biortech.2011.07.102
  11. G. Afrane and O. W Achaw. Bioresour. Technol., 99, 6678 (2008). https://doi.org/10.1016/j.biortech.2007.11.071
  12. S. H Guo, J. H Peng, W. Li, K. B Yang, L. B Zhang and S. M Zhang. Appl. Surf. Sci., 255, 8443 (2009). https://doi.org/10.1016/j.apsusc.2009.05.150
  13. J. Acharya, J. N Sahu, B. K Sahoo, C. R Mohanty and B. C Meikap, J. Chem. Eng., 150, 25-39 (2009). https://doi.org/10.1016/j.cej.2008.11.035
  14. A. Elmouwahidi, Z. Z Benabithe, F. C Marin and C. M Castilla, Bioresour. Technol., 111, 185 (2012). https://doi.org/10.1016/j.biortech.2012.02.010
  15. A. Yuan, X. Wang, Y. Wang and J. Hu, Energy Conversion and Management, 51, 2588 (2010). https://doi.org/10.1016/j.enconman.2010.05.024
  16. Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang and H. Xu, Mater. Chem. Phys., 80, 704 (2003). https://doi.org/10.1016/S0254-0584(03)00105-6
  17. W. Li, L. Zhang, J. Peng, N. Li and X. Zhu, Industrial Crops and Products, 27, 341 (2008). https://doi.org/10.1016/j.indcrop.2007.11.011
  18. Y. Zhang, G. Li, L. Wang, A. Zhang, Y. Song and B. Huang. Int. J. Hydrogen Energy, 36, 11760 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.020
  19. V. Subramanian, H. Zhu and B. Wei, J. Power Sources, 159, 361 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.012
  20. W. H Wang and X. D Wang. Electrochimica Acta, 52, 6755 (2007). https://doi.org/10.1016/j.electacta.2007.04.121
  21. M. Ghaemi, F. Ataherian, A. Zolfaghari and S. M Jafari, Electrochimica Acta, 53, 4607 (2008). https://doi.org/10.1016/j.electacta.2007.12.040