DOI QR코드

DOI QR Code

ZnO Hierarchical Nanostructures Fabricated by Electrospinning and Hydrothermal Methods for Photoelectrochemical Cell Electrodes

전기방사와 수열합성법으로 제작한 광전화학셀 전극용 나노 계층형 아연산화물 구조 연구

  • Yi, Hwanpyo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hyuck (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Okkil (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Hyojin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Dojin (Department of Materials Science and Engineering, Chungnam National University)
  • 이환표 (충남대학교 공과대학 신소재공학과) ;
  • 정혁 (충남대학교 공과대학 신소재공학과) ;
  • 김옥길 (충남대학교 공과대학 신소재공학과) ;
  • 김효진 (충남대학교 공과대학 신소재공학과) ;
  • 김도진 (충남대학교 공과대학 신소재공학과)
  • Received : 2013.10.08
  • Accepted : 2013.10.30
  • Published : 2013.11.27

Abstract

Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at $400^{\circ}C$ in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.

Keywords

References

  1. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 5(1), 191 (2005). https://doi.org/10.1021/nl048301k
  2. T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Int. J. Hydrogen Energy, 27(10), 991 (2002).
  3. A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Adv. Funct. Mater, 19(12), 1849 (2009). https://doi.org/10.1002/adfm.200801363
  4. W. J. Younpblood, S. H. A. Lee, Y. Kobayashi, E. A. Hernandezpagan, P. G. Hoertz, T. A. Moore, A. L. Moore, D. Gust, T. E. Mallouk, J. Am. Chem. Soc. 131(3), 926 (2009). https://doi.org/10.1021/ja809108y
  5. H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. Zhang, D. P. Wilkinson, Chem. Soc. Rev. 41(17), 5654 (2012). https://doi.org/10.1039/c2cs35019j
  6. A. Kudo, Y. Miseki, Chem. Soc. Rev, 38(1), 253 (2009). https://doi.org/10.1039/b800489g
  7. Y. Li and J. Z. Zhang, Laser Photo. Rev. 4(4), 517 (2010).
  8. Y. Lin, G. Yuan, R. Liu, S. Zhou, S.W. Sheehan, D. Wang, Chem. Phys. Lett. 507(4), 209 (2011). https://doi.org/10.1016/j.cplett.2011.03.074
  9. R. Abe, J. Photochem. Photobio. C: Photochem. Rev, 11(4), 179 (2010). https://doi.org/10.1016/j.jphotochemrev.2011.02.003
  10. F. E. Osterloh and B. A. Parkinson, MRS Bull, 36(1), 17(2011) https://doi.org/10.1557/mrs.2010.5
  11. H. N. Hieu, N. Q. Dung, J. M. Kim, D. J. Kim, Nanoscale, 5(12), 5530(2013) https://doi.org/10.1039/c3nr00889d
  12. H. J. Kim, M. S. Seol, J. H. Lee, K. J. Yong, J. Phys. Chem. 115(51), 25429 (2011).
  13. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, S. J. Park, H. Y. Kim, Macromol. Res., 18(3), 233 (2010). https://doi.org/10.1007/s13233-010-0303-9
  14. Y. Li, J. Gong, Y. Deng, Sens. Actuators, A, 158(2), 176 (2010). https://doi.org/10.1016/j.sna.2009.12.030
  15. O. K. Kim, H. J. Kim, D. J. Kim, Kor. J . Mater. Res, 22(11), 609 (2012). https://doi.org/10.3740/MRSK.2012.22.11.609
  16. S. Feng and R. Xu, Acc. Chem. Res., 34(3), 239 (2001). https://doi.org/10.1021/ar0000105