References
- M. E. Baron, The Origins of the Infinitesimal Calculus, New York, Dover Publications, 1969.
- J. L. Bell, The Continuous and the Infinitesimal in Mathematics and Philosophy, Polimetrica, International Scientific Publisher, Monza-Milano (Italy), 2006.
- C. B. Boyer, A History of Mathematics, Wiley, 1991. (양영오, 조윤동 역, 수학의 역사 (상), 경문사, 2000.)
- J. L. Coolidge, A History of Geometrical Methods, New York, Dover Publications, 1963.
- E. J. Dijksterhuis, Archimedes, New Jersey, Princeton University Press, 1987.
- C. H. Edwards, The Historical Development of the Calculus, New York, Springer-Verlag, 1979.
- T. L. Heath, The Works of Archimedes with the Method of Archimedes, New York, Dover Publications, 1912.
- Hong, G. J., An Educational Study on Archimedes' Mathematics, Doctoral Dissertation of Seoul National University, 2008. (홍갑주,'아르키메데스 수학의 교육적 연구', 서울대학교 박사학위논문, 2008.)
- W. R. Knorr, "The Method of Indivisibles in Ancient Geometry", Vita Mathematica (R. Calinger Ed.), 1996, 67-86.
- R. Nets, The works of Archimedes (Vol. 1), Cambridge, Cambridge University Press, 2004.
- Park, S. Y.,"The New Interpretation of Archimedes' 'Method'", The Korean Journal for History of Mathematics, 23(4) (2010), 47-58. (박선용,"아르키메데스방법에 대한 새로운 해석", 한국수학사학회지 23(4) (2010), 47-58.)
- D. E. Smith, History of Mathematics (Vol. 2), New York, Dover Publications, 1953.
Cited by
- A study on the analytic geometric characteristics of Archimedes' 《The Method》 and its educational implications vol.27, pp.4, 2014, https://doi.org/10.14477/jhm.2014.27.4.271