DOI QR코드

DOI QR Code

Congestion Control Scheme for Multimedia Streaming Service in Broadband Wireless Networks

광대역 무선 네트워크에서 멀티미디어 스트리밍 서비스를 위한 혼잡 제어 기법

  • Lee, Eun-Jae (Department of Electronics and Communications Engineering, Kwangwoon University) ;
  • Chung, Kwang-Sue (Department of Electronics and Communications Engineering, Kwangwoon University)
  • Received : 2013.07.06
  • Accepted : 2013.08.14
  • Published : 2013.11.30

Abstract

It is difficult for TCP congestion control algorithm to ensure the bandwidth and delay bound required for media streaming services in broadband wireless network environments. In this paper, we propose the COIN TCP (COncave INcrease TCP) scheme for providing a high-quality media streaming services. The COIN TCP concavely increases the congestion window size by adjusting the increment rate of congestion window, that is inversely proportional to the amount of data accumulated in the router queue. As a result, our scheme can quickly occupy the available bandwidth and prevent the heavy congestion. It also improves the link utilization by adjusting the decrement rate of congestion window according to the packet loss rate with the random loss. Through the simulation results, we prove that our scheme improves the total throughput in broadband wireless network.

광대역 무선 네트워크 환경에서 TCP의 혼잡 제어 알고리즘은 미디어 스트리밍 서비스가 요구하는 대역폭 및 지연 한계를 보장하기 어렵다. 본 논문에서는 고품질의 미디어 스트리밍 서비스를 제공하기 위한 혼잡 제어 기법인 COIN TCP (COncave INcrease TCP)를 제안하였다. COIN TCP는 라우터 큐의 데이터 양에 반비례하게 조절된 혼잡 윈도우의 증가율을 통해 혼잡 윈도우 크기를 오목하게 증가시킴으로써, 가용 대역폭의 빠른 점유와 Heavy Congestion의 방지가 가능하다. 또한 랜덤 손실을 고려한 패킷 손실률에 따라 혼잡 윈도우의 감소율을 조절하여 링크 활용도를 향상시켰다. 제안 기법의 실험 결과를 통해 광대역 무선 네트워크에서의 처리량 향상을 확인하였다.

Keywords

References

  1. O. Oyman, J. Foerster, Y.Tcha and S. Lee, "Toward Enhanced Mobile Video Services over WiMAX and LTE," IEEE Communications Magazine, vol. 48, no. 8, pp. 68-76, August 2010. https://doi.org/10.1109/MCOM.2010.5534589
  2. G. Thompson and Y. Chen, "IPTV: Reinventing Television in the Internet Age," IEEE Internet Computing, vol. 12, no. 3, pp. 11-14, May 2009.
  3. C. Begen, T. Akgul, and M. Baugher, "Watching Video over the Web Part 1: Streaming Protocols," IEEE Internet Computing, vol. 15, no. 2, pp. 54-63, March-April 2011. https://doi.org/10.1109/MIC.2010.155
  4. S. Floyd, S. Ratnasamy, and S. Shenker, "Modifying TCP's Congestion Control for High Speeds," http://www.icir.org/ floyd/hstcp.html, pp. 1-5, May 2002.
  5. T. Kelly, "Scalable TCP: Improving Performance in HighSpeed Wide Area Networks," ACM SIGCOMM Computer Communication Review, vol. 33, no. 2, pp. 83-91, February 2003.
  6. S. Floyd, "HighSpeed TCP for Large Congestion Windows," RFC 3649, December 2003.
  7. C. Fu and S. Liew, "TCP Veno: TCP Enhancement for Transmission over Wireless Access Networks," IEEE Journal of Selected Areas in Communications, vol. 21, no. 2, pp. 216-228, February 2003. https://doi.org/10.1109/JSAC.2002.807336
  8. S. Ha, I. Rhee, and L. Xu, "CUBIC: A New TCP-friendly High-speed TCP Variant," ACM SIGOPS Operating System Review, vol. 42, no. 5, pp. 64-74, July 2008.
  9. K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A Compound TCP Approach for High-speed and Long Distance Networks," in Proc. of the IEEE INFOCOM, pp. 1-12, April 2006.
  10. Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, "Achieving Moderate Fairness for UDP Flows by Path-status Classification," in Proc. of the IEEE Conference on Local Computer Networks, pp. 252-261, November 2000.