DOI QR코드

DOI QR Code

Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder at Different Vertical Locations

내부 원형 실린더의 위치 변화에 따른 기울어진 사각 밀폐계 내부의 자연대류 현상

  • Jeong, Seung Jae (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yoon, Hyun Sik (Global Core Research Center for Ships and Offshore Plants, Pusan Nat'l Univ.) ;
  • Choi, Changyoung (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Ha, Man Young (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 정승재 (부산대학교 기계공학부) ;
  • 윤현식 (조선해양플랜트 글로벌 핵심 연구센터) ;
  • 최창영 (부산대학교 기계공학부) ;
  • 하만영 (부산대학교 기계공학부)
  • Received : 2013.05.10
  • Accepted : 2013.09.13
  • Published : 2013.12.01

Abstract

A numerical analysis of the effect of the position of a circular cylinder in a $45^{\circ}$ tilted enclosure on natural convection in the enclosure is presented. The location of the cylinder is changed between -0.4 and 0.4. The Rayleigh number is varied between $10^3$ and $10^5$. The effect of the location of the cylinder on natural convection in the enclosure is analyzed by the isothermal line, stream line, and surface-averaged Nusselt number. The flow and heat transfer characteristics are independent of time in the range of the Rayleigh number and cylinder location that is considered in this study. The surface-averaged Nusselt number of the cylinder and enclosure increases as the cylinder gets closer to the wall of the enclosure.

본 연구에서는 $45^{\circ}$기울어진 저온의 사각형 밀폐계 내부에 존재하는 고온의 원형 실린더의 위치 변화에 따른 밀폐계 내부 자연대류 현상에 대한 수치해석을 수행하였다. Rayleigh 수는 $10^3$부터 $10^5$까지 변화하였으며 내부 실린더의 위치는 $-0.4{\leq}{\delta}{\leq}0.4$ 범위에서 0.1 간격으로 변화시켰다. 원형 실린더의 위치 변화에 따른 밀폐계 내부의 자연대류 현상은 실린더 표면과 밀폐계 표면의 Nu 수, 밀폐계 내부의 등온선 및 유선을 바탕으로 분석하였다. 본 연구에서 고려한 Rayleigh 수의 범위와 원형 실린더의 위치 범위에서는 밀폐계 내부의 열유동은 정상상태의 특성을 보였다. 그리고 내부 원형 실린더가 벽면에 가까워 질수록 실린더벽면과 밀폐계 벽면의 평균 Nu 수가 증가하였다.

Keywords

References

  1. Lee, J.R. and Ha, M.Y., 2005, "A Numerical Study of Natural Convection in a Horizontal Enclosure with a Conducting Body," Int. J. Heat Mass Transfer, Vol. 48, 3308-3318. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.026
  2. Xu, X., Yu, Z., Hu, Y., Fan, L. and Cen, K., 2010, "A Numerical Study of Laminar Natural Convective Heat Transfer Around a Horizontal Cylinder Inside a Concentric Air-Filled Triangular Enclosure," Int. J. Heat Mass Transfer, Vol. 53, pp. 345-355. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.023
  3. Moukalled, F., Diab, H. and Acharya, S., 2007, "Laminar Natural Convection in a Horizontal Rhombic Annulus," Numer. Heat Transfer, Vol.1, pp. 89-107.
  4. Kim, B.S., Lee, D.S., Ha, M.Y. and Yoon, H.S., 2008, "A Numerical Study of Natural Convection in a Sqaure Enclosure with a Circular Cylinder at Different Vertical Locations," Int. J. Heat Mass Transfer, Vol. 51, pp. 1888-1906. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033
  5. Kim, J., Kim, D. and Choi, H., 2001, "An immersed- Boundary Finite Volume Method for Simulations of Flow in Complex Geometries," J. Comput. Phys, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778
  6. Kim, J. and Choi, H., 2004, "An Immersed-Boundary Finite-Volume Method for Simulation of Heat Transfer in Complex Geometries," KSME Int. J., Vol. 18, pp. 1026-1035.
  7. Kim, J. and Moin, P., 1985, "Application of a Fractional Step Method to Incompressible Navier- Stokes Equations," J. Comput. Phys, Vol. 59, pp. 308-323. https://doi.org/10.1016/0021-9991(85)90148-2
  8. Zang, Y., Street, R.L. and Koseff, J.R., 1994, "A non- Staggered Grid, Fractional Step Method for Time- Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates," J. Comput. Phys, Vol. 114, pp. 18-33. https://doi.org/10.1006/jcph.1994.1146
  9. Lee, J.M., Ha, M.Y. and Yoon, H.Y., 2010, "Natural Convection in a Square Enclosure with a Circular Cylinder at Different horizontal and Diagonal Locations," Int. J. Heat Mass Transfer Vol. 53, pp. 5905-5919. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.043

Cited by

  1. Effect of Prandtl Number on Natural Convection in Tilted Square Enclosure with Inner Circular Cylinder vol.38, pp.11, 2014, https://doi.org/10.3795/KSME-B.2014.38.11.935