DOI QR코드

DOI QR Code

소지역 실업률의 패널추정을 위한 일반화커널추정방정식

Generalized kernel estimating equation for panel estimation of small area unemployment rates

  • 심주용 (인제대학교 데이터정보학과) ;
  • 김영원 (숙명여자대학교 통계학과) ;
  • 황창하 (단국대학교 응용통계학과)
  • Shim, Jooyong (Department of Data Science, Inje University) ;
  • Kim, Youngwon (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, Changha (Department of Applied Statistics, Dankook University)
  • 투고 : 2013.06.29
  • 심사 : 2013.08.23
  • 발행 : 2013.11.30

초록

오늘날 높은 실업률은 대부분의 국가에서 중요한 문제 중의 하나이다. 한편 소지역의 노동 관련 통계에 대한 요구가 지난 몇년간 급속도로 증가하였다. 그러나 대부분의 공식통계를 생산하기 위한 표본설계는 대영역의 통계를 생산할 목적으로 설계되기 때문에 소지역의 경우 배정되는 표본조사단위수가 극히 적어 신뢰성 있는 통계 산출이 어렵다. 그리고 소지역 추정에 대한 대부분의 기존 연구들은 특정 시점에서의 추정에 국한되어 왔다. 그러나 대부분의 공식통계들은 월, 분기 또는 연 단위로 측정되는 패널자료이기 때문에 이를 고려한 추정방법이 필요하다. 본 논문에서는 패널자료의 분석을 위해 유용하게 사용되고 있는 일반화추정방정식의 비모수적 버전인 일반화커널추정방정식을 도출하여 조사시점을 고려한 소지역 실업률의 추정에 활용하는 방안을 제안한다. 모의실험을 통하여 일반화커널추정방정식 방법, 일반화추정방정식 방법 및 일반화선형모형과 비교한다. 그리고 2005년 1월부터 12월까지 경상남도 및 울산광역시의 25개 시군구의 경제활동인구조사의 패널자료에 위에서 언급한 세 가지 방법을 적용하여 해당 소지역의 월별 실업률을 추정한다.

The high unemployment rate is one of the major problems in most countries nowadays. Hence, the demand for small area labor statistics has rapidly increased over the past few years. However, since sample surveys for producing official statistics are mainly designed for large areas, it is difficult to produce reliable statistics at the small area level due to small sample sizes. Most of existing studies about the small area estimation are related with the estimation of parameters based on cross-sectional data. By the way, since many official statistics are repeatedly collected at a regular interval of time, for instance, monthly, quarterly, or yearly, we need an alternative model which can handle this type of panel data. In this paper, we derive the generalized kernel estimating equation which can model time-dependency among response variables and handle repeated measurement or panel data. We compare the proposed estimating equation with the generalized linear model and the generalized estimating equation through simulation, and apply it to estimating the unemployment rates of 25 areas in Gyeongsangnam-do and Ulsan for 2005.

키워드

참고문헌

  1. Chung, Y. S., Lee, K. and Kim, B. C. (2003). Adjustment of unemployment estimates based on small area estimation in Korea. Survey Methodology, 29, 45-52.
  2. Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31, 377-403.
  3. Datta, G. S., Lahiri, P., Maiti, T. and Lu, K. L. (1999). Hierarchical Bayes estimation of unemployment rates for the states of the U.S. Journal of the American Statistical Association, 94, 1074-1082. https://doi.org/10.1080/01621459.1999.10473860
  4. Ghosh, M., Natarajan, K., Stroud, T. W. F. and Carlin, B. P. (1998). Generalized linear models for small area estimation. Journal of the American Statistical Association, 93, 273-282. https://doi.org/10.1080/01621459.1998.10474108
  5. Hwang, C. (2010). Support vector quantile regression for longitudinal data. Journal of Korean Data & Information Science Society, 21, 309-316.
  6. Hwang, C. (2011). Asymmetric least squares regression estimation using weighted least squares support vector machine. Journal of Korean Data & Information Science Society, 22, 995-1005.
  7. Hwang, C. and Shim, J. (2012). Mixed effects least squares support vector machine for survival data analysis. Journal of Korean Data & Information Science Society, 23, 739-748. https://doi.org/10.7465/jkdi.2012.23.4.739
  8. Jeong, S. and Shin, K. (2012). Small area estimation via nonparametric mixed effects model. The Korean Journal of Applied Statistics, 25, 457-464. https://doi.org/10.5351/KJAS.2012.25.3.457
  9. Khoshgooyanfard, A. and Monazzah, M. T. (2006). A cost effective strategy for provincial unemployment estimation: A small area approach. Survey Methodology, 32, 105-114.
  10. Kim, Y. and Choi, H. (2004). Small area estimation techniques based on logistic model to estimate unemployment rate. Communications of the Korean Statistical Society, 11, 583-595. https://doi.org/10.5351/CKSS.2004.11.3.583
  11. Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. https://doi.org/10.1093/biomet/73.1.13
  12. Marker, D. A. (1999). Organization of small area estimators using a generalized linear regression framework. Journal of Official Statistics, 15, 1-24.
  13. Nelder, J. A. andWedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society A, 135, 370-384. https://doi.org/10.2307/2344614
  14. Noble, A., Haslett, S. and Arnold, G. (2002). Small area estimation via generalized linear models. Journal of Official Statistics, 18, 45-60.
  15. Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression. Journal of Royal Statistical Society B, 70, 265-286. https://doi.org/10.1111/j.1467-9868.2007.00635.x
  16. Pereira, L. N., Mendes, J. M. and Coelho, P. S. (2013). Model-based estimation of unemployment rates in small areas of Portugal. Communications in Statistics - Theory and Methods, 42, 1325-1342. https://doi.org/10.1080/03610926.2012.749989
  17. Pfeffermann, D. (2013). New important developments in small area estimation. Statistical Science, 28, 40-68. https://doi.org/10.1214/12-STS395
  18. Rao, J. N. K. (2003). Small area estimation, John Wiley & Sons, New Jersey.
  19. Salvati, N., Chandra, H., Ranalli, M. G. and Chambers, R. (2010). Small area estimation using a nonparametric model-based direct estimator. Computational Statistics and Data Analysis, 54, 2159-2171. https://doi.org/10.1016/j.csda.2010.03.023
  20. Shim, J. and Hwang, C. (2012). M-quantile kernel regression for small area estimation. Journal of Korean Data & Information Science Society, 23, 749-756. https://doi.org/10.7465/jkdi.2012.23.4.749
  21. Shim, J. and Hwang, C. (2013). Expected shortfall estimation using kernel machines. Journal of Korean Data & Information Science Society, 24, 12-20.
  22. Ugarte, M. D., Goicoa, T., Militino, A. F. and Sagaseta-Lopez, M. (2009). Estimating unemployment in very small areas. SORT, 33, 49-70.
  23. Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
  24. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447.
  25. Yeo, I., Son, K. and Kim, Y. (2008). Small area estimation via generalized estimating equations and the panel analysis of unemployment rates. The Korean Journal of Applied Statistics, 21, 665-674. https://doi.org/10.5351/KJAS.2008.21.4.665
  26. You, Y., Rao, J. N. K. and Gambino, J. (2003). Model-based unemployment rate estimation for the Canadian labour force survey: A hierarchical Bayes approach. Survey Methodology, 29, 25-32.

피인용 문헌

  1. Estimating small area proportions with kernel logistic regressions models vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.941
  2. Analysis of English abstracts in Journal of the Korean Data & Information Science Society using topic models and social network analysis vol.26, pp.1, 2015, https://doi.org/10.7465/jkdi.2015.26.1.151
  3. A spatial panel regression model for household final consumption expenditure based on KTX effects vol.27, pp.5, 2016, https://doi.org/10.7465/jkdi.2016.27.5.1147
  4. A longitudinal study for child aggression with Korea Welfare Panel Study data vol.25, pp.6, 2014, https://doi.org/10.7465/jkdi.2014.25.6.1439
  5. 경시적 자료를 이용한 아동 학업성취도 분석 vol.28, pp.1, 2017, https://doi.org/10.7465/jkdi.2017.28.1.1