DOI QR코드

DOI QR Code

Enhancement of Erythrosine Photodynamic Therapy against Streptococcus mutans by Chlorhexidine

Streptococcus mutans에 대한 클로르헥시딘과 Erythrosine 광역동 치료의 상승효과

  • Park, Jongcheol (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Howon (Department of Pediatric Dentistry, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University) ;
  • Lee, Siyoung (Department of Microbiology and Immunology, Oral Science Research Center, College of Dentistry, Gangneung-Wonju National University)
  • 박종철 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 박호원 (강릉원주대학교 치과대학 소아치과학교실) ;
  • 이시영 (강릉원주대학교 치과대학 미생물학 및 면역학교실 및 구강과학연구소)
  • Received : 2013.04.12
  • Accepted : 2013.09.07
  • Published : 2013.11.29

Abstract

The purpose of this study was to investigate the synergistic effects of erythrosine sensitized with a conventional halogen curing unit and sub-minimal bactericidal concentration(sub-MBC) of chorhexidine on bacterial viability of Streptococcus mutans in planktonic state. Sub-minimal bactericidal concentration of chlorhexidine was added into wells containing bacteria and erythrosine. The range of concentrations tested for chorhexidine was from 0.0000001% to 0.001%. The irradiation of the bacterial suspensions was performed for 15 sec with a conventional halogen curing unit light. In another set of experiment, the effects of 0.001% chlorhexidine were observed by adding chlorhexidine into wells containing the sub-minimal bactericidal concentration of erythrosine. At the concetration of 0.001% chlorhexidine, there were no antibacterial effects in the absence of erythrosine PDT(p < 0.05). At the concentraton of $1{\mu}M$ erythrosine, there was no photodynamic therapy effect in the absence of chlorhexidine(p < 0.05). But in the presence of sub-minimal bactericidal concentration of erythrosine with light exposure, the addition of 0.001% chlorhexidine increased the bactericidal rate(p < 0.05). A combination of erythrosine PDT with sub-MBC chlorhexidine resulted in a significant reduction in bacterial counts when compared to the case with the absence of chlorhexidine.

이 연구의 목적은 치과 임상에서 널리 사용되는 항미생물제제인 클로르헥시딘과 할로겐을 이용한 erythrosine 광역동 치료를 병용하였을 때, 부유 상태의 Streptococcus mutans에 미치는 항균효과를 평가하기 위함이다. S. mutans 표준 균주를 Brain Heart Infusion broth medium에 첨가하여 부유 상태로 배양하였다. 치과용 할로겐 광중합 장치를 광원으로 사용하였으며 치태 착색제인 erythrosine을 광감각제로 사용하였다. 클로르헥시딘의 최소살균농도를 측정하고, erythrosine 광역동 치료에서 최소살균농도를 결정하기 위해 $1{\mu}M$, $5{\mu}M$, $10{\mu}M$의 erythrosine 농도를 사용하여 할로겐 광중합기로 15초 동안 광조사를 시행한 후 세균수를 측정하였다. 마지막으로 클로르헥시딘과 erythrosine 광역동 치료를 병용한 경우 나타나는 상승효과를 평가하기 위해, 최소살균농도 이하인 0.001% 클로르헥시딘과 최소살균농도 이하인 $1{\mu}M$ erythrosine 광역동 치료를 병용하여 항균효과를 비교하였다. 최소살균농도 이하의 클로르헥시딘만 단독으로 사용하는 경우 S. mutans의 세균수가 유의하게 감소하지 않았다(p < 0.05). 또한 erythrosine 광역동 치료만 단독으로 시행한 경우에는 $5{\mu}M$, $10{\mu}M$의 erythrosine 농도에서 유의하게 세균수가 감소하였지만, $1{\mu}M$ erythrosine 농도에서는 세균수가 유의하게 감소하지 않았다(p < 0.05). 마지막으로 두 가지 치료법의 상승효과를 평가하기 위해 최소살균농도 이하인 $1{\mu}M$ erythrosine 광역동 치료와 0.001% 클로르헥시딘을 병용하는 경우에는, 대조군과 비교하여 세균수가 유의하게 감소하였다(p < 0.05). 최소살균농도 이하인 0.001% 클로르헥시딘과 $1{\mu}M$ erythrosine 광역동 치료를 각각 단독으로 시행하는 경우에는 유의한 항균효과가 없었지만, 두 가지 치료를 병용하는 경우 61%의 S. mutans 세균수가 감소하였다. 이상의 결과를 종합해 볼때 S. mutans에 대해 최소살균농도 이하의 클로르헥시딘과 erythrosine 광역동 치료를 병용하는 경우 상승효과가 있음을 알 수 있다.

Keywords

References

  1. Krasse B : Caries risk: a pratical guide for an assessment and control. chicago: Quintessence Publishing, 1985.
  2. Smith DJ : Dental caries vaccines: prospects and concerns. Expert Rev Vaccines, 13:335-349, 2002.
  3. Marsh PD : Are dental diseases examples of ecological catastrophes? Microbiology, 149:279-294, 2003. https://doi.org/10.1099/mic.0.26082-0
  4. Marsh PD : Microbiologic aspects of dental plague and dental caries. Dent Clin North Am, 43:599-614, 1999.
  5. Mikkelsen L, Jensen SB, Jakobsen J : Microbial studies on plaque from carious and caries-free proximal tooth surfaces in a population with high caries experience. Caries Res, 15:428-435, 1981. https://doi.org/10.1159/000260548
  6. Loe H : Oral hygiene in the prevention of caries and periodontal disease. Int Dent J, 50:129-139, 2000. https://doi.org/10.1111/j.1875-595X.2000.tb00553.x
  7. Smith DJ : Dental caries vaccines: prospects and concerns. Crit Rev Oral Biol Med, 13:335-149, 2002. https://doi.org/10.1177/154411130201300404
  8. Goncalves MO, Coutinho-Filho WP, Pimenta FP, et al. : Periodontal disease as reservoir for multi-resistant and hydrolytic enterobacterial species. Lett Appl Microbiol, 44:488-494, 2007. https://doi.org/10.1111/j.1472-765X.2007.02111.x
  9. Walker CB : The acquisition of antibiotic resistance in the periodontal microflora. Periodontol, 10:79-88, 1996. https://doi.org/10.1111/j.1600-0757.1996.tb00069.x
  10. Soukos NS, Goodson JM : Photodynamic therapy in the control of oral biofilms. Periodontol, 55:143-66, 2000.
  11. Wilson M : Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. J Appl Bacteriol, 75:299-306, 1993. https://doi.org/10.1111/j.1365-2672.1993.tb02780.x
  12. Wilson M, Dobson J, Sarkar S : Sensitization of periodontopathogenic bacteria to killing by light from a low-power laser. Oral Microbiol Immunol, 8:182-187, 1993. https://doi.org/10.1111/j.1399-302X.1993.tb00663.x
  13. Wilson M, Pratten J, Pearson GJ : Bacteria in supragingival plaque samples can be killed by lowpower laser light in the presence of a photosensitizer. J Appl Bacteriol, 78:569-574, 1995. https://doi.org/10.1111/j.1365-2672.1995.tb03101.x
  14. Lee YH, Park HW, Lee JH, et al. : The photodynamic therapy on Streptococcus mutans biofilms using erythrosine and dental halogen curing unit. Int J Oral Sci, 4:196-201, 2012.
  15. Jung JS, Park HW, Lee JH : The effect of photodynamic therapy on the viability of Streptococcus mutans isolated from oral cavity. J Korean Acad Pediatr Dent, 39:233-241, 2012. https://doi.org/10.5933/JKAPD.2012.39.3.233
  16. Sibata CH, Colussi VC, Oleinick NL, et al. : Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res, 33:869-880, 2000.
  17. Wilson M : Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother, 42:13-28, 1998. https://doi.org/10.1093/jac/42.1.13
  18. Zvi M, Yeshayau N : New trends in photobiology bactericidal effects of photoactivated porphyrins - An alternative approach to antimicrobial drugs. J Photochem Photobiol B, 5:281-293, 1990. https://doi.org/10.1016/1011-1344(90)85044-W
  19. Tamietti BF, Machado AH, Maftoum-Costa M, et al. : Analysis of mitochondrial activity related to cell death after PDT with AlPCS4. Photomed Laser Surg, 25:175-179, 2007. https://doi.org/10.1089/pho.2007.2040
  20. Langslet A, Olsen I, Lie SO, et al. : Chlorhexidine treatment of oral candidiasis in seriously diseased children. Acta Paediat Scand, 63:809-811, 1974. https://doi.org/10.1111/j.1651-2227.1974.tb04868.x
  21. Mohammadi Z, Abbott PV : The properties and applications of chlorhexidine in endodontics. Int Endod J, 42:288-302, 2009. https://doi.org/10.1111/j.1365-2591.2008.01540.x
  22. Khaled H, Peter A. Whittaker : Effect of subinhibitory concentration of chlorhexidine on lipid and sterol composition of Candida albicans, Mycopathologia, 140:69-76, 1998.

Cited by

  1. Optimum Treatment Parameters for Photodynamic Antimicrobial Chemotherapy on <italic>Streptococcus mutans</italic> Biofilms vol.42, pp.2, 2015, https://doi.org/10.5933/JKAPD.2015.42.2.151