DOI QR코드

DOI QR Code

QUALITATIVE ANALYSIS OF A DIFFUSIVE FOOD WEB CONSISTING OF A PREY AND TWO PREDATORS

  • Shi, Hong-Bo (School of Mathematical Science Huaiyin Normal University)
  • Received : 2012.02.05
  • Published : 2013.11.30

Abstract

This paper is concerned with the positive steady states of a diffusive Holling type II predator-prey system, in which two predators and one prey are involved. Under homogeneous Neumann boundary conditions, the local and global asymptotic stability of the spatially homogeneous positive steady state are discussed. Moreover, the large diffusion of predator is considered by proving the nonexistence of non-constant positive steady states, which gives some descriptions of the effect of diffusion on the pattern formation.

Keywords

References

  1. D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, In Partial Differential Equations and Related Topics, (Edited by J. A. Goldstein), Lecture Notes in Mathematics, Vol. 446, pp. 5-49, Springer, Berlin, 1975. https://doi.org/10.1007/BFb0070595
  2. A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998.
  3. J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol. 44 (1975), no. 1, 331-340. https://doi.org/10.2307/3866
  4. R. S. Cantrell and G. C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Chichester, UK, 2003.
  5. D. L. DeAngelis, R. A. Goldstein, and R. V. O'Neill, A model for trophic interaction, Ecology 56 (1975), no. 4, 881-892. https://doi.org/10.2307/1936298
  6. O. Diekmann, Thresholds and travelling waves for the geographical spread of infection, J. Math. Biol. 6 (1978), no. 2, 109-130. https://doi.org/10.1007/BF02450783
  7. Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, Trans. Amer. Math. Soc. 349 (1997), no. 6, 2443-2475. https://doi.org/10.1090/S0002-9947-97-01842-4
  8. Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: effects of saturation, Proc. Roy. Soc. Edinb. 131A (2001), no. 2, 321-349.
  9. Y. Du and J. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous envirment, In Nonlinear dynamics and evolution equations (Ed. by H. Brunner, X. Zhao and X. Zou), 95-135, Fields Inst. Commun. 48, AMS, Providence, RI, 2006.
  10. Y. H. Fan and W. T. Li, Global asymptotic stability of a ratio-dependent predator-prey system with diffusion, J. Comput. Appl. Math. 188 (2006), no. 2, 205-227. https://doi.org/10.1016/j.cam.2005.04.007
  11. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2001.
  12. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math-ematics, Vol. 840, Springer-Verlag, Berlin, New York, 1981.
  13. M. A. Hixon and G. P. Jones, Competition, predation, and density-dependent mortality in demersal marine fishes, Ecology 86 (2005), no. 11, 2847-2859. https://doi.org/10.1890/04-1455
  14. C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can. 97 (1965), no. S45, 5-60. https://doi.org/10.4039/entm9747fv
  15. W. Ko and I. Ahn, Analysis of ratio-dependent food chain model, J. Math. Anal. Appl. 335 (2007), no. 1, 498-523. https://doi.org/10.1016/j.jmaa.2007.01.089
  16. W. Ko and K. Ryu, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge, J. Differential Equations 231 (2006), no. 2, 534-550. https://doi.org/10.1016/j.jde.2006.08.001
  17. W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with constant diffusion rates, J. Math. Anal. Appl. 344 (2008), no. 1, 217-230. https://doi.org/10.1016/j.jmaa.2008.03.006
  18. W. Ko and K. Ryu, A qualitative study on general Gause-type predator-prey models with non-monotonic functional response, Nonlinear Anal. Real World Appl. 10 (2009), no. 4, 2558-2573. https://doi.org/10.1016/j.nonrwa.2008.05.012
  19. L. Li, Coexistence theorems of steady states for predator-prey interacting systems, Trans. Amer. Math. Soc. 305 (1988), no. 1, 143-166. https://doi.org/10.1090/S0002-9947-1988-0920151-1
  20. Z. Lin and M. Pederson, Stability in a diffusive food-chain model with Michaelis-Menten functional response, Nonlinear Anal. 57 (2004), no. 3, 421-433. https://doi.org/10.1016/j.na.2004.02.022
  21. L. Lin, W. M. Ni, and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988), no. 1, 1-27. https://doi.org/10.1016/0022-0396(88)90147-7
  22. A. J. Lotka, Elements of Physical Biology, Williams and Wilkins Company, Baltimore, 1925.
  23. Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 131 (1996), no. 1, 79-131. https://doi.org/10.1006/jdeq.1996.0157
  24. P. Y. H. Pang and M. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 4, 919-942. https://doi.org/10.1017/S0308210500002742
  25. P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey, J. Differential Equations 200 (2004), no. 2, 245-273. https://doi.org/10.1016/j.jde.2004.01.004
  26. P. Y. H. Pang and M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, Proc. London Math. Soc. 88 (2004), no. 1, 135-157. https://doi.org/10.1112/S0024611503014321
  27. P. Y. H. Pang and W. Zhou, Positive stationary solutions for a diffusive variable-territory prey-predator model, J. Math. Anal. Appl. 379 (2011), no. 1, 290-304. https://doi.org/10.1016/j.jmaa.2011.01.001
  28. R. Peng, J. Shi, and M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion, SIAM J. Appl. Math. 67 (2007), no. 5, 1479-1503. https://doi.org/10.1137/05064624X
  29. S. Ruan, A. A. P. Ricciardi, and D. L. DeAngelis, Coexistence in competition models with density-dependent mortality, C. R. Biologies 330 (2007), no. 12, 845-854. https://doi.org/10.1016/j.crvi.2007.10.004
  30. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London Ser. B237 (1952), no. 641, 37-72.
  31. V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature 118 (1926), no. 2972, 558-560. https://doi.org/10.1038/118558a0
  32. M. Wang, Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional response and diffusion, Phys. D 196 (2004), no. 1-2, 172-192. https://doi.org/10.1016/j.physd.2004.05.007
  33. M. Wang and P. Y. H. Pang, Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model, Appl. Math. Lett. 21 (2008), no. 11, 1215-1220. https://doi.org/10.1016/j.aml.2007.10.026