DOI QR코드

DOI QR Code

Analysis of Stratified Rock under Vertical Load in Pile Foundation of Wind Turbine Using Circular Foundation Analysis Method with Equivalent Effective Width

등가유효폭을 가진 원형기초해석법을 이용한 풍력발전기 말뚝기초의 연직하중에 대한 층상암반 해석

  • 김도한 (제주대학교 풍력특성화협동과정) ;
  • 박상렬 (제주대학교 토목공학과) ;
  • 문경태 (제주대학교 풍력특성화협동과정)
  • Received : 2013.06.12
  • Accepted : 2013.09.13
  • Published : 2013.11.30

Abstract

In the design of pile foundation on the rock layer in the stratified structure with sedimentary and rock layers, the structural analysis of the stratified rock layer is required to determine the failure modes (flexural failure, punching shear failure or end bearing failure) and the bearing capacity of the rock layer. However, the existing usable Elastic Plate Analysis Method (EPAM) suggested by ACI committee 436 and Korean Code Requirements for Structural Foundation Design is very complex, and engineers have many difficulties in using it. Therefore, in this research, we proposed the relatively simple Circular Foundation Analysis Method (CFAM) with the concept and the equation of the equivalent effective width (radius) instead of the complex EPM, and the related equations of bending moment and shear force to be equal to the analysis results of EPAM. As a result, the proposed CFAM using the equivalent effective width (radius) is simple and convenient to use, and the analysis results of it are very good in their accuracies comparing those of EPAM and Finite Element Method.

퇴적층과 암반층이 층상구조로 되어있는 지반의 층상암반층 위에 말뚝기초를 설계할 경우, 연직하중에 대한 지지암반의 파괴모드(휨파괴, 펀칭전단파괴 혹은 선단지지파괴)를 검토하고 지지력을 계산하기 위해서는 층상지지암반층의 구조해석이 필요하다. 그러나 ACI committee 436과 우리나라 구조물기초설계기준에서 제안하고 있는 기존의 이용 가능한 탄성평판해석법(Elastic Plate Analysis Method)은 매우 복잡하여 기술자가 이용하는데 어려움이 많다. 따라서 본 연구에서는 복잡한 탄성평판해석법 대신 비교적 간단한 원형기초해석법(Circular Foundation Analysis Method)을 이용할 수 있도록 등가유효폭(반경)의 개념과 식을 제시하였고, 이를 통하여 탄성평판해석에 의한 모멘트와 전단력이 원형평판해석의 결과와 같도록 관계식을 제안하였다. 그 결과 등가유효폭을 이용한 원형기초해석의 방법은 매우 단순하고 편리하였고, 제안된 방법에 의한 결과를 탄성평판해석과 유한요소해석 결과와 비교한 결과 매우 잘 일치하였다.

Keywords

References

  1. ABAQUS v6.11 (2011). Users manual, Hibbitt, Karlsson & Sorensen Inc.
  2. ACI Committee 436 (1966). "Suggested design procedures for combined footings and mats." ACI Journal, Oct.
  3. Beyer, K. (1956). The statics of steel structure, Springer-Verlag, Berlin (in German).
  4. Hetenyi, M. (1946). Beams on elastic foundation, University of Michigan Press, Ann Arbor, Michigan, pp. 245-255.
  5. Hong, E. S. (2012). Present status and development plan of wind power industry in Korea, KIIEE, Vol. 26, No. 6, pp. 17-24 (in Korean).
  6. Korea EXIM (2012). Overseas expansion strategy of renewable energy industry in Korea, p. 173 (in Korean).
  7. Korea Institute of Energy Research (2006). The geological inspection of seabed in Woljeongri, Jeju Island, Geology Report (in Korean).
  8. Korean Geotechnical Society (2009). Code requirements for structural foundation design, pp. 276-286 (in Korean).
  9. Schleicher, F. (1926). Circular plates on elastic foundation, springer, Berlin (in German).
  10. Scott, R. F. (1981). Foundation analysis, Prentice-Hall, Englewood Cliffs, N.J.
  11. Sung, J. K. and Lee, T. J. (2013). "Study on present status and future direction of offshore wind power in Korea." Journal of Electrical Engineering and Technology, KIEE, Vol. 62, No. 3, pp. 312-321 (in Korean).
  12. Winterkorn, H. F. and Dang, H. Y. (1975). Foundation engineering handbook, Van Nostrand, pp. 528-536.
  13. Wybren de Vries. (2011). Support structure concepts for deep water sites, UpWind - Final Report WP4.2, The Netherlands.
  14. Yoon, S. H. and Ko, K. W. (2011). Topography, geology, and underground water in Jeju Island, Nae Ha Publishing Company, pp. 35-57 (in Korean).

Cited by

  1. Design of Mat Foundation by Simplified Flexible Method Using Regression Analysis vol.35, pp.1, 2015, https://doi.org/10.12652/Ksce.2015.35.1.0153