DOI QR코드

DOI QR Code

Nondestructive Evaluation of Microstructure of SiCf/SiC Composites by X-Ray Computed Microtomography

  • Kim, Weon-Ju (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Daejong (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Jung, Choong Hwan (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Park, Ji Yeon (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Snead, Lance L. (Materials Science and Technology Division, Oak Ridge National Laboratory)
  • Received : 2013.09.26
  • Accepted : 2013.10.31
  • Published : 2013.11.30

Abstract

Continuous fiber-reinforced ceramic matrix composites (CFCCs) have a complex distribution of porosity, consisting of interfiber micro pores and interbundle/interply macro pores. Owing to the complex geometry of the pores and fiber architecture, it is difficult to obtain representative microstructural features throughout the specimen volume with conventional, destructive ceramographic approaches. In this study, we introduce X-ray computed microtomography (X-ray ${\mu}CT$) to nondestructively analyze the microstructures of disk shaped and tubular $SiC_f$/SiC composites fabricated by the chemical vapor infiltration (CVI) method. The disk specimen made by stacking plain-woven SiC fabrics exhibited periodic, large fluctuation of porosity in the stacking direction but much less variation of porosity perpendicular to the fabric planes. The X-ray ${\mu}CT$ evaluation of the microstructure was also effectively utilized to improve the fabrication process of the triple-layered tubular SiC composite.

Keywords

References

  1. R. Naslain, "Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: an Overview," Compos. Sci. Technol., 64 [2] 155-70 (2004). https://doi.org/10.1016/S0266-3538(03)00230-6
  2. L. L. Snead, T. Nozawa, M. Ferraris, Y. Katoh, R. Shinavski, and M. Sawan, "Silicon Carbide Composites as Fusion Power Reactor Structural Materials," J. Nucl. Mater., 417 [1-3] 330-39 (2011). https://doi.org/10.1016/j.jnucmat.2011.03.005
  3. W. -J. Kim, S. M. Kang, K. H. Park, A. Kohyama, W. -S. Ryu, and J. Y. Park, "Fabrication and Ion Irradiation Characteristics of SiC-Based Ceramics for Advanced Nuclear Energy Systems (in Korean)," J. Kor. Ceram. Soc., 42 [8] 575-81 (2005). https://doi.org/10.4191/KCERS.2005.42.8.575
  4. B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R. H. Jones, and L. L. Snead, "Issues and Advances in $SiC_f/SiC$ Composites Development for Fusion Reactors," J. Nucl. Mater., 329-333 56-65 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.002
  5. Y. Katoh, L. L. Snead, I. Szlufarska, and W. J. Weber, "Radiation Effects in SiC for Nuclear Structural Applications," Curr. Opin. Solid State Mater. Sci., 16 [3] 143-52 (2012). https://doi.org/10.1016/j.cossms.2012.03.005
  6. L. Chaffron and J. -L. Seran, "Innovative $SiC_f/SiC$ Composite Materials for Fast Reactor," Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, San Diego, USA, June 13-17, 2010.
  7. K. Yueh, D. Carpenter, and H. Feinroth, "Clad in Clay," Nucl. Eng. Int., 55 14-16 (2010).
  8. W. -J. Kim, D. Kim, and J. Y. Park, "Fabrication and Material Issues for the Application of SiC Composites to LWR Fuel Cladding," Nucl. Eng. Technol., 45 [4] 565-72 (2013). https://doi.org/10.5516/NET.07.2012.084
  9. D. E. Bray and D. McBride, Nondestructive Testing Techniques, John Wiley & Sons, New York, 1992.
  10. J. Kim, P. K. Liaw, and H. Wang, "The NDE Analysis of Tension Behavior in Nicalon/SiC Ceramic Matrix Composites," JOM, 55 [1] 1-13 (2003). https://doi.org/10.1007/s11837-003-0218-4
  11. S. R. Stock, "Recent Advances in X-Ray Microtomography Applied to Materials," Int. Mater. Rev., 53 [3] 129-81 (2008). https://doi.org/10.1179/174328008X277803
  12. M. Strobl, I. Manke, N. Kardjilov, A. Hilger, M. Dawson, and J. Banhart, "Advances in Neutron Radiography and Tomography," J. Phys. D: Appl. Phys., 42 [24] 243001 (2009). https://doi.org/10.1088/0022-3727/42/24/243001
  13. F. Beckmann, R. Grupp, A. Haibel, M. Huppmann, M. Nothe, A. Pyzalla, W. Reimers, A. Schreyer, and R. Zettler, "In-Situ Synchrotron X-Ray Microtomography Studies of Microstructure and Damage Evolution in Engineering Materials," Adv. Eng. Mater., 9 [11] 939-50 (2007). https://doi.org/10.1002/adem.200700254
  14. D. Attwood, "Nanotomography Comes of Age," Nature, 442 [7103] 642-43 (2006).
  15. J. Baruchel, J. -Y. Buffiere, P. Cloetens, M. D. Michiel, E. Ferrie, W. Ludwig, E. Maire, and L. Salvo, "Advances in Synchrotron Radiation Microtomography," Scr. Mater., 55 [1] 41-46 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.012
  16. A. Hodgkins, T. J. Marrow, P. Mummery, B. Marsden, and A. Fok, "X-Ray Tomography Observation of Crack Propagation in Nuclear Graphite," Mater. Sci. Technol., 22 [9] 1045-51 (2006). https://doi.org/10.1179/174328406X114126
  17. Y. -C. Hung, J. A. Bennett, F. A. Garcia-Pastor, M. Di Michiel, J. -Y. Buffiere, T. J. A. Doel, P. Bowen, and P. J. Withers, "Fatigue Crack Growth and Load Redistribution in Ti/SiC Composites Observed In Situ," Acta Mater., 57 [2] 590-99 (2009). https://doi.org/10.1016/j.actamat.2008.09.042
  18. H. Zhang, H. Toda, P. C. Qu, Y. Sakaguchi, M. Kobayashi, K. Uesugi, and Y. Suzuki, "Three-Dimensional Fatigue Crack Growth Behavior in an Aluminum Alloy Investigated with In Situ High-Resolution Synchrotron X-Ray Microtomography," Acta Mater., 57 [11] 3287-300 (2009). https://doi.org/10.1016/j.actamat.2009.03.036
  19. P. J. Schilling, B. R. Karedla, A. K. Tatiparthi, M. A. Verges, and P. D. Herrington, "X-Ray Computed Microtomography of Internal Damage in Fiber Reinforced Polymer Matrix Composites," Compos. Sci. Technol., 65 [14] 2071-78 (2005). https://doi.org/10.1016/j.compscitech.2005.05.014
  20. C. Petit, S. Meille, and E. Maire, "Cellular Solids Studied by X-Ray Tomography and Finite Element Modeling - a Review," J. Mater. Res., 28 [17] 2191-201 (2013). https://doi.org/10.1557/jmr.2013.97
  21. R. C. Atwood, J. R. Jones, P. D. Lee, and L. L. Hench, "Analysis of Pore Interconnectivity in Bioactive Glass Foams Using X-Ray Microtomography," Scr. Mater., 51 [11] 1029-33 (2004). https://doi.org/10.1016/j.scriptamat.2004.08.014
  22. E. Maire, P. Colombo, J. Adrien, L. Babout, and L. Biasetto, "Characterization of the Morphology of Cellular Ceramics by 3D Image Processing of X-Ray Tomography," J. Eur. Ceram. Soc., 27 [4] 1973-81 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.05.097
  23. J. Martin-Herrero and C. Germain, "Microstructure Reconstruction of Fibrous C/C Composites from X-Ray Microtomography," Carbon, 45 [6] 1242-53 (2007). https://doi.org/10.1016/j.carbon.2007.01.021
  24. J. M. Hausherr, W. Krenkel, F. Fischer, and V. Altstadt, "Nondestructive Characterization of High-Performance C/SiC-Ceramics Using X-Ray-Computed Tomography," Int. J. Appl. Ceram. Technol., 7 [3] 361-68 (2010).
  25. J. H. Kinney, T. M. Breunig, T. L. Starr, D. Haupt, M. C. Nichols, S. R. Stock, M. D. Butts, and R. A. Saroyan, "X-Ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites," Science, 260 [5109] 789-92 (1993). https://doi.org/10.1126/science.260.5109.789
  26. A. Morales-Rodriguez, P. Reynaud, G. Fantozzi, J. Adrien, and E. Maire, "Porosity Analysis of Long-Fiber-Reinforced Ceramic Matrix Composites Using X-Ray Tomography," Scr. Mater., 60 [6] 388-90 (2009). https://doi.org/10.1016/j.scriptamat.2008.11.018
  27. C. Chateau, L. Gelebart, M. Bornert, J. Crepin, E. Boller, C. Sauder, and W. Ludwig, "In Situ X-Ray Microtomography Characterization of Damage in $SiC_f/SiC$ Minicomposites," Compos. Sci. Technol., 71 916-24 (2011). https://doi.org/10.1016/j.compscitech.2011.02.008
  28. H. A. Bale, A. Haboub, A. A. MacDowell, J. R. Nasiatka, D. Y. Parkinson, B. N. Cox, D. B. Marshall, and R. O. Ritchie, "Real-Time Quantitative Imaging of Failure Events in Materials Under Load at Temperatures Above $1,600^{\circ}C$," Nat. Mater., 12 [1] 40-46 (2013). https://doi.org/10.1038/nmat3497
  29. http://rsbweb.nih.gov/ij/.
  30. D. Kim, J. Lee, W. -J. Kim, and J. Y. Park, "Effect of Filament Winding Methods on Surface Roughness and Fiber Volume Fraction of $SiC_f/SiC$ Composite Tubes," J. Kor. Ceram. Soc., 50 [6] 359-63 (2013). https://doi.org/10.4191/kcers.2013.50.6.359

Cited by

  1. FEA Study on Hoop Stress of Multilayered SiC Composite Tube for Nuclear Fuel Cladding vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.435