DOI QR코드

DOI QR Code

Thermal and Mechanical Properties of ZrB2-SiC Ceramics Fabricated by Hot Pressing with Change in Ratio of Submicron to Nano Size of SiC

서브마이크론/나노 크기의 SiC 비율변화에 따른 ZrB2-SiC 세라믹스의 열적, 기계적 특성

  • Kim, Seongwon (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Chae, Jung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 김성원 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 채정민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 오윤석 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2013.10.01
  • Accepted : 2013.10.25
  • Published : 2013.11.30

Abstract

$ZrB_2$-SiC ceramics are fabricated via hot pressing with different ratios of submicron or nano-sized SiC in a $ZrB_2$-20 vol%SiC system, in order to examine the effect of the SiC size ratio on the microstructures and physical properties, such as thermal conductivity, hardness, and flexural strength, of $ZrB_2$-SiC ceramics. Five different $ZrB_2$-SiC ceramics ($ZrB_2$-20 vol%[(1-x)SiC + xnanoSiC] where x = 0.0, 0.2, 0.5, 0.8, 1.0) are prepared in this study. The mean SiC particle sizes in the sintered bodies are highly dependent on the ratio of nano-sized SiC. The thermal conductivities of the $ZrB_2$-SiC ceramics increase with the ratio of nano-sized SiC, which is consistent with the percolation behavior. In addition, the $ZrB_2$-SiC ceramics with smaller mean SiC particle sizes exhibit enhanced mechanical properties, such as hardness and flexural strength, which can be explained using the Hall-Petch relation.

Keywords

References

  1. F. Monteverde, S. Guicciardi, and A. Bellosi, "Advances in Microstructure and Mechanical Properties of Zirconium Diboride Based Ceramics," Mater. Sci. Eng. A, 346 [1-2] 310-19 (2003). https://doi.org/10.1016/S0921-5093(02)00520-8
  2. W. G. Fahrenholtz, G. E. Hilmas, A. L. Chamberlain, and J. W. Zimmermann, "Processing and Characterization of $ZrB_2$-based Ultra-high Temperature Monolithic and Fibrous Monolithic Ceramics," J. Mater. Sci., 39 [19] 5951-57 (2004). https://doi.org/10.1023/B:JMSC.0000041691.41116.bf
  3. M. J. Gasch, D. T. Ellerby, and S. M. Johnson, "Ultra High Temperature Ceramic Composites," pp. 197-224 in Handbook of Ceramic Composite, Ed. by N. P. Bansal, Kluwer Academic Publishers, Boston/Dordrecht/London, 2005.
  4. W. G. Fahrenholtz, G. E. Hilmas, I. G. Talmy, and J. A. Zaykoski, "Refractory Diborides of Zirconium and Hafnium," J. Am. Ceram. Soc., 90 [5] 1347-64 (2007). https://doi.org/10.1111/j.1551-2916.2007.01583.x
  5. S. Norasetthekul, P. T. Eubank, W. L. Bradley, B. Bozkurt, and B. Stucker, "Use of Zirconium Diboride Copper as an Electrode in Plasma Applications," J. Mater. Sci., 34 [6] 1261-70 (1999). https://doi.org/10.1023/A:1004529527162
  6. S. Q. Guo, T. Mizuguchi, M. Ikegami, and Y. Kagawa, "Oxidation Behavior of $ZrB_2-MoSi_2-SiC$ Composites in Air at 1500 Degrees C," Ceram. Int., 37 [2] 585-91 (2011). https://doi.org/10.1016/j.ceramint.2010.09.034
  7. S. Q. Guo, "Densification of $ZrB_2$-based Composites and Their Mechanical and Physical Properties: A Review," J. Eur. Ceram. Soc., 29 [6] 995-1011 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.11.008
  8. J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, K.-J. Kim, S. Nahm, and S. Kim, "Effect of $B_4C$ Addition on the Microstructures and Mechanical Properties of $ZrB_2-SiC$ Ceramics (in Korean)," J. Kor. Ceram. Soc., 47 [6] 578-82 (2010). https://doi.org/10.4191/KCERS.2010.47.6.578
  9. S. S. Hwang, A. L. Vasiliev, and N. P. Padture, "Improved Processing and Oxidation-resistance of $ZrB_2$ Ultra-high Temperature Ceramics Containing SiC Nanodispersoids," Mater. Sci. Eng. A, 464 [1-2] 216-24 (2007). https://doi.org/10.1016/j.msea.2007.03.002
  10. S. Q. Guo, J. M. Yang, H. Tanaka, and Y. Kagawa, "Effect of Thermal Exposure on Strength of $ZrB_2$-based Composites with Nano-sized SiC Particles," Compos. Sci. Technol., 68 [14] 3033-40 (2008). https://doi.org/10.1016/j.compscitech.2008.06.021
  11. F. Monteverde, "Beneficial Effects of an Ultra-fine Alpha-SiC Incorporation on the Sinterability and Mechanical Properties of $ZrB_2$," App. Phys. A, 82 [2] 329-37 (2006).
  12. A. Rezaie, W. G. Fahrenholtz, and G. E. Hilmas, "Effect of Hot Pressing Time and Temperature on the Microstructure and Mechanical Properties of $ZrB_2$-SiC," J. Mater. Sci., 42 [8] 2735-44 (2007). https://doi.org/10.1007/s10853-006-1274-2
  13. S. Kim, J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, and B.-K. Jang, "Change in Microstructures and Physical Properties of $ZrB_2$-SiC Ceramics Hot-pressed with a Variety of SiC Sources," Ceram. Int., in press (2013).
  14. J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz, R. B. Dinwiddie, W. D. Porter, and H. Wang, "Thermophysical Properties of $ZrB_2$ and $ZrB_2$-SiC Ceramics," J. Am. Ceram. Soc., 91 [5] 1405-11 (2008). https://doi.org/10.1111/j.1551-2916.2008.02268.x
  15. M. Ikegami, K. Matsumura, S. Q. Guo, Y. Kagawa, and J. M. Yang, "Effect of SiC Particle Dispersion on Thermal Properties of SiC Particle-dispersed $ZrB_2$ Matrix Composites," J. Mater. Sci., 45 [19] 5420-23 (2010). https://doi.org/10.1007/s10853-010-4641-y
  16. J. Zou, G. J. Zhang, H. Zhang, Z. R. Huang, J. Vleugels, and O. Van der Biest, "Improving High Temperature Properties of Hot Pressed $ZrB_2$-20 vol% SiC Ceramic Using High Purity Powders," Ceram. Int., 39 [1] 871-76 (2013). https://doi.org/10.1016/j.ceramint.2012.06.018
  17. ImageJ, National Institute of Health, http://rsb.info.nih.gov/ij/.
  18. NIST-JANAF Thermochemical Tables, National Institute of Standards and Technology, http://kinetics.nist.gov/janaf/.
  19. Y.-M. Chiang, D. Birnie III, and W. D. Kingery, "Physical Ceramics," pp. 474-77, John Wiley & Sons, Inc., USA, 1997.
  20. D. He and N. N. Ekere, "Effect of Particle Size Ratio on the Conducting Percolation Threshold of Granular Conductive-insulating Composites," J. Phys. D, 37 [13] 1848-52 (2004). https://doi.org/10.1088/0022-3727/37/13/019
  21. N. Lebovka, M. Lisunova, Y. P. Mamunya, and N. Vygornitskii, "Scaling in Percolation Behaviour in Conductive-insulating Composites with Particles of Different Size," J. Phys. D, 39 [10] 2264-71 (2006). https://doi.org/10.1088/0022-3727/39/10/040
  22. L. Ren, Z. Han, J. Tong, J. Li, D. Chen, and D. He, "Conductive Percolation Threshold of Conductive-insulating Granular Composites," J. Mater. Sci., 41 [13] 2157-59 (2006). https://doi.org/10.1007/s10853-006-5221-z
  23. M. Gasch, S. Johnson, and J. Marschall, "Thermal Conductivity Characterization of Hafnium Diboride-based Ultra-high-temperature Ceramics," J. Am. Ceram. Soc., 91 [5] 1423-32 (2008). https://doi.org/10.1111/j.1551-2916.2008.02364.x
  24. F. L. Riley, "Structural Ceramics : Fundamentals and Case Studies," pp. 185-87, Cambridge, United Kingdom, 2009.
  25. J. B. Wachtman, W. C. Cannon, and M. J. Matthewson, "Mechanical Properties of Ceramics," 2nd Ed., pp. 212-17 John Wiley & Sons, Inc., USA, 2009.
  26. H. S. Kim, "On the Rule of Mixtures for the Hardness of Particle Reinforced Composites," Mater. Sci. Eng. A, 289 [1-2] 30-33 (2000). https://doi.org/10.1016/S0921-5093(00)00909-6

Cited by

  1. Behavior of HfB2-30 vol% SiC UHTC obtained by sol-gel approach in the supersonic airflow vol.92, pp.2, 2019, https://doi.org/10.1007/s10971-019-05029-9
  2. Behavior of Ultra-High Temperature Ceramic Material HfB2-SiC-Y3Al5O12 under the Influence of Supersonic Dissociated Air Flow vol.65, pp.10, 2013, https://doi.org/10.1134/s0036023620100198