DOI QR코드

DOI QR Code

Synthesis and Compaction Behavior of Monodispersed 3Y-ZrO2 Spherical Agglomerates

  • Choi, Hong-Goo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yong, Seok-Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Do Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2013.11.12
  • Accepted : 2013.11.18
  • Published : 2013.11.30

Abstract

Monodispersed 3Y-$ZrO_2$ spherical agglomerates were synthesized by thermal hydrolysis process followed by crystallization processes (hydrothermal treatment and calcination). The crystallization process affected the properties of the final particles, such as the primary particle size, the agglomeration state, and the fraction of $ZrO_2$ monoclinic phase. The hydrothermal treated spherical particles were porous microstructures (weak agglomerates) composed of small primary particles with a size of 14 nm, but the calcined spherical particles had a dense microstructure due to the hard aggregation between primary particles. While the calcined particles had a low green density due to the hard aggregation, hydrothermal treated ones were soft agglomerates and had a deflection point at 50 MPa due to the rearrangement of secondary spherical particles and the filling of the interstices with the primary particles. Finally, the green density of hydrothermally treated $ZrO_2$ particles was 58% at 200 MPa.

Keywords

References

  1. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, "Transformation Toughening in Zirconia-Containing Ceramics," J. Am. Ceram. Soc., 83 [3] 461-87 (2000).
  3. T. Yamaguchi, "Application of $ZrO_2$ as a Catalyst and a Catalyst Support," Catal. Today, 20 [2] 199-218 (1994). https://doi.org/10.1016/0920-5861(94)80003-0
  4. G.-L. Tan and X.-J. Wu, "Electronic Conductivity of a $ZrO_2$ Thin Film as an Oxygen Sensor," Thin Solid Films, 330 59-61 (1998). https://doi.org/10.1016/S0040-6090(98)00759-7
  5. R. C. Garvie, "Stabilization of the Tetragonal Structure in Zirconia Microcrystals," J. Phys. Chem., 82 [2] 218-24 (1978). https://doi.org/10.1021/j100491a016
  6. A. Bravo-Leon, Y. Morikawa, M. Kawahara, and M. J. Mayo, "Fracture Toughness of Nanocrystalline Tetragonal Zirconia with Low Yttria Content," Acta Mater., 50 4555-62 (2002). https://doi.org/10.1016/S1359-6454(02)00283-5
  7. S. Y. Liu and I. W. Chen, "Fatigue Deformation Mechanisms of Zirconia Ceramics," J. Am. Ceram. Soc., 75 [5] 1191-204 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb05558.x
  8. Y. T. Moon, D. K. Kim, and C. H. Kim, "Preparation of Monodisperse $ZrO_2$ by the Microwave Heating of Zriconyl Chloride Solution," J. Am. Ceram. Soc., 78 [4] 1303-06 (1995).
  9. Y. T. Moon, H. K. Park, D. K. Kim, and C. H. Kim, "Preparation of Monodisperse and Spherical Zirconia Powders by Heating of Alcohol-Aqueous Salt-Solutions," J. Am. Ceram. Soc., 78 [10] 2690-94 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08042.x
  10. M. Z.-C. Hu, R. D. Hunt, E. A. Payzant, and C. R. Hubbard, "Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Homogeneous Precipitation Methods," J. Am. Ceram. Soc., 82 [9] 2313-20 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02085.x
  11. B. Djuricic, S. Pickering, D. McGarry, P. Glaude, R. Tambuyser, and K. Schuster, "The Properties of Zirconia Powders Produced by Homogeneous Precipitation," Ceram. Int., 21 195-206 (1995). https://doi.org/10.1016/0272-8842(95)90910-B
  12. J. Joo, T. Yu, Y. W. Kim, H. M. Park, Fanxin Wu, J. Z. Zhang, and T. Hyeon, "Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals," J. Am. Ceram. Soc, 125 [21] 6553-57 (2003).
  13. J.-D. Lin and J.-G. Duh, "Coprecipitation and Hydrothermal Synthesis of Ultrafine 5.5 mol% $CeO_2$-2 mol% $YO_{1.5}.-ZrO_2$ Powders," J. Am. Ceram. Soc., 80 [1] 92-98 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb02795.x
  14. T. Tsukada, S. Venigalla, A. A. Morrone, and J. H. Adair, "Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders," J. Am. Ceram. Soc., 82 [5] 1169-74 (1999).
  15. G. Dell'Agli and G. Mascolo, "Agglomeration of 3 mol% Y ${\pm}$ TZP Powders Synthesized by Hydrothermal Treatment," J. Eur. Ceram. Soc., 21 [1] 29-35 (2001). https://doi.org/10.1016/S0955-2219(00)00171-0
  16. R. R. Piticescu, C. Monty, D. Taloi, A. Motoc, and S. Axinte, "Hydrothermal Synthesis of Zirconia Nanomaterials," J. Eur. Ceram. Soc., 21 [10-11] 2057-60 (2001). https://doi.org/10.1016/S0955-2219(01)00171-6
  17. O. Vasylkiv and Y. Sakka, "Synthesis and Colloidal Processing of Zirconia Nanopowder," J. Am. Ceram. Soc., 84 [11] 2489-94 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01041.x
  18. I. S. Seog and C. H. Kim, "Preparation of Monodispersed Spherical Silicon Carbide by the Sol-Gel Method," J. Mater. Sci., 28 [12] 3277-82 (1993). https://doi.org/10.1007/BF00354247
  19. J. H. Jean and T. A. Ring, "Processing Monosized $TiO_2$ Powders Generated with HPC Dispersant," Am. Ceram. Soc. Bull., 65 [12] 1574-77 (1986).
  20. J. H. Jean and T. A. Ring, "Effect of a Sterically Stabilizing Surfactant on the Nucleation, Growth and Agglomeration of Monosized Ceramic Powders," Colloids Surf., 29 273-91 (1986).
  21. G. Balakrishnan, P. Kuppusami, D. Sastikumar, and J. I. Song, "Growth of Nanolaminate Structure of Tetragonal Zirconia by Pulsed Laser Deposition," Nanoscale Res. Lett., 8 [1] 1-7 (2013). https://doi.org/10.1186/1556-276X-8-1
  22. A. Patterson, "The Scherrer Formular for X-ray Particle Size Determination," Phys. Rev., 56 [10] 978-82 (1939). https://doi.org/10.1103/PhysRev.56.978
  23. I. R. Gibson, G. P. Dransfield, and J. T. S. Irvine, "Sinterability of Commercial 8 mol% Yttria-Stabilized Zirconia Powders and the Effect of Sintered Density on the Ionic Conductivity," J. Mater. Sci., 33 [17] 4297-305 (1998). https://doi.org/10.1023/A:1004435504482