DOI QR코드

DOI QR Code

Preparation of Nano-sized Titanium Oxide Powder Using Natural Polymer Matrix

천연고분자 매트릭스를 사용한 산화티탄 나노입자의 합성

  • Kim, Soo-Jong (Department of Advanced Materials & Chemical Engineering, Halla University) ;
  • Han, Cheong-Hwa (Department of Advanced Materials & Chemical Engineering, Halla University) ;
  • Shim, Jae-Ho (Department of Advanced Materials & Chemical Engineering, Halla University)
  • 김수종 (한라대학교 공과대학 신소재화학공학과) ;
  • 한정화 (한라대학교 공과대학 신소재화학공학과) ;
  • 심재호 (한라대학교 공과대학 신소재화학공학과)
  • Received : 2013.10.08
  • Accepted : 2013.11.22
  • Published : 2013.11.30

Abstract

Nano-sized titanium oxide powders were synthesized by a polymer matrix technique using pulp and Titanium tetraisopropoxide (TTIP) as starting materials. The synthesized powders were characterized by XRD and FE-SEM. The particle size of the powders was controlled by preparation conditions, such as heat treatment temperature and time. After investigating various drying and heat treatment conditions, 50-100 nm sized homogeneous titanium oxide particles were obtained by treating at $600^{\circ}C$ for 1 h. The crystallization and rapid growth of particles was accelerated by increasing heat treatment temperature and time. Anatase phase generated below $600^{\circ}C$ transformed to the rutile phase with increasing heat treatment temperature. Moreover, above $800^{\circ}C$, heat treatment time had a very large influence on particle growth, and changing the heating condition also had a large influence on crystal growth.

Keywords

References

  1. X. Chen and S. S. Mao, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications," Chem. Rev., 107 [7] 2891-959 (2007). https://doi.org/10.1021/cr0500535
  2. H. K. Yoo, J. K. Lee, K. H. Hwang, D. S. Seo, H. S. Kang, H. S. Bae, and W. W. Kim, "Characteristics of Ag Ions Photoadsorption Using Photocatalytic $TiO_2$ Nanocrystalline Powders (in Korean)," J. Kor. Ceram. Soc., 39 [6] 535-39 (2002) https://doi.org/10.4191/KCERS.2002.39.6.535
  3. H. D. Nam, B. H. Lee, S. -J. Kim, C. -H. Jung, J.-H. Lee, and S. Park, "Preparation of Ultrafine Crystalline $TiO_2$ Powders from Aqueous $TiCl_4$ Solution by Precipitation," Jpn. J. Appl. Phys, 37 [8] 4603-08 (1998). https://doi.org/10.1143/JJAP.37.4603
  4. J. S. Lee, K. H. You, and C. B. Park, "Highly Photoactive, Low Bandgap $TiO_2$ Nanoparticles Wrapped by Graphene," Adv. Mater., 24 [8] 1084-88 (2012). https://doi.org/10.1002/adma.201104110
  5. T. Sugimoto, X. Zhou, and A. Muramastu, "Synthesis of Uniform Anatase $TiO_2$ Nanoparticles by Gel-Sol Method : 4. Shape Control," J. Colloid Interface Sci., 259 [1] 53-61 (2003). https://doi.org/10.1016/S0021-9797(03)00035-3
  6. A. S. Attar, M. S. Ghamsari, F. Hajesmaeilbaigi, and S. Mirdamadi, "Modifier Ligands Effects on the Synthesized $TiO_2$ Nanocrystals," J. Mater. Sci., 43 [5] 1723-29 (2008). https://doi.org/10.1007/s10853-007-2244-z
  7. P. D. Cozzoli, A. Kornowski, and H. Weller, "Low-temperature Synthesis of Soluble and Processable Organiccapped Anatase $TiO_2$ Nanorods," J. Am. Chem. Soc., 125 [47] 14539-48 (2003). https://doi.org/10.1021/ja036505h
  8. S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, and W. I. Lee, "Preparation of Size-Controlled $TiO_2$ Nanoparticles and Derivation of Optically Transparent Photocatalytic Films," Chem. Mater., 15 [17] 3326-31 (2003). https://doi.org/10.1021/cm030171d
  9. Q. Zhang and L. Gao, "Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights from Rutile $TiO_2$," Langmuir, 19 967-71 (2003). https://doi.org/10.1021/la020310q
  10. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata, and S. Yanagida, "Hydrothermal Synthesis of Nanosized Anatase and Rutile $TiO_2$ Using Amorphous Phase $TiO_2$," J. Mater. Chem., 11 1694-703 (2001). https://doi.org/10.1039/b008974p
  11. K. Yanagisawa and J. Ovenstone, "Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature," J. Phys. Chem., 103 [37] 7781-87 (1999). https://doi.org/10.1021/jp990521c
  12. A. Chemseddine and A. Moritz, "Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization," Eur. J. Inorg. Chem., 1999 [2] 235-45 (1999). https://doi.org/10.1002/(SICI)1099-0682(19990202)1999:2<235::AID-EJIC235>3.0.CO;2-N
  13. T. Moritz, J, Reiss, K. Diesner, D. Su, and A. Chemsiddine, "Nanostructured Crystalline $TiO_2$ through Growth Control and Stabilization of Intermediate Structural Building Units," J. Phys. Chem. B, 101 [41] 8052-53 (1997). https://doi.org/10.1021/jp9705131
  14. T. Sugimoto, X. Zhou, and A. Muramastu, "Synthesis of Uniform Anatase $TiO_2$ Nanoparticles by Gel-Sol Method : 3. Formation Process and Size Control," J. Colloid Interface Sci., 259 [1] 43-52 (2003). https://doi.org/10.1016/S0021-9797(03)00036-5
  15. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, "Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications," J. Am. Ceram. Soc., 80 [12] 3157-71 (1997).
  16. M. D. Wei, Y. Konishi, H. Zhou, H. Sugihara, and H. Arakawa, "Utilization of Titanate Nanotubes as an Electrode Material in Dye-Sensitized Solar Cells," J. Electrochem. Soc., 153 [6] A1232-36 (2006). https://doi.org/10.1149/1.2194667
  17. Z. Miao, D. S. Xu, J. H. Ouyang, G. L. Guo, X. S. Zhao, and Y. Tang, "Electrochemically Induced Sol-Gel Preparation of Single-Crystalline $TiO_2$ Nanowires," Nano. Lett., 2 [7] 717-20 (2002). https://doi.org/10.1021/nl025541w
  18. E. L. Crepaldi, G. J. de. A. A. Soler-Illia, D. Grosso, F. Cagnol, F. Ribot, and C. Sanchez, "Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase $TiO_2$," J. Am. Chem. Soc., 125 [32] 9770-86 (2003). https://doi.org/10.1021/ja030070g
  19. G. H. Kim, W. J. Lee, D. G. Kim, S. K. Lee, S. H. Lee, and I. S. Kim, "Synthesis of Nano-sized $TiO_2$ Powder Using a Hydrothermal Process," Kor. J. Met. Mater., 48 [6] 543-50 (2010).
  20. W. Y. Jung, S. H. Lee, D. S. Kim, G. D. Lee, S. S. Park, and S. S. Hong, "Synthesis of Titanium Dioxides from Peroxotitanate Solution Using Hydrothermal Method and Their Photocatalytic Decomposition of Methylene Blue," Kor. Chem. Eng. Res., 48 [4] 417-22 (2010).
  21. S. J. Kim and H. S. Kwon, "Synthesis and Photo Luminescent Characteristics of $SrAl_2O_4:\;Eu^{2+},\;Dy^{3+}$ Phosphor using Polymer Matrix," J. Kor. Ins. Electr. Electro. Mater. Eng., 20 [8] 671-79 (2007). https://doi.org/10.4313/JKEM.2007.20.8.671
  22. T. Masaki, S. J. Kim, H. Watanabe, K. Miyamoto, M. Onho, and K. H. Kim, "Synthesis of Nano-Sized ZnO Powders Prepared by Precursor Process," J. Ceram. Process. Res., 4 [3] 135-39 (2003).
  23. H. J. Noh, J. K. Lee, D. S. Seo, and K. H. Hwang, "Preparation of Zirconia Nanocrystalline Powder by the Hydrothermal Treatment at Low Temperature (in Korean)," J. Kor. Ceram. Soc., 39 [3] 308-14 (2002). https://doi.org/10.4191/KCERS.2002.39.3.308
  24. H. Nishzawa, N. Yamasaki, and K. Matsuoka, "Crystallization and Transformation of Zirconia Under Hydrothermal Conditions," J. Am. Ceram. Soc., 65 [7] 343-46 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10467.x