DOI QR코드

DOI QR Code

Evaluation of tensile strengths and fracture toughness of plain weave composites

평직 CFRP 복합재료의 인장강도 및 파괴저항성 특성 평가

  • Park, Soon-Cheol (Research & Development Division, Hyundai Motors) ;
  • Kang, Sung-Su (Division of Mechanical Engineering, Pusan National University) ;
  • Kim, Gug-Yong (Division of Mechanical Engineering, Pusan National University) ;
  • Choi, Jung-Hun (Research & Development Division, Hyundai Motors)
  • Received : 2013.09.04
  • Accepted : 2013.10.28
  • Published : 2013.11.30

Abstract

The mechanics of woven fabric-based laminated composites is complex. Then, many researchers have studied woven fabric CFRP materials but fracture resistance behaviors for composites have not been still standardized. It also shows the different behavior according to load and fiber direction. Therefore, there is a need to consider fracture resistance behavior in conformity with load and fiber direction at designing structure using woven CFRP materials. In this study, therefore, the tensile strength and resistance for plain-weave CFRP composite materials were investigated under various different angle condition(load to fiber angle: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$). Tensile strength and fracture toughness tests were carried out under mode I transverse crack opening load by using compact tension specimens.

직조 형태의 복합재료의 파손 메커니즘은 복합적이다. 지금까지 평직 복합재료를 대상으로 많은 연구가 이루어졌으나, 파괴 저항성 거동은 아직도 표준화 되지 못한 실정이다. 또한 섬유배열방향에 따라 다른 거동을 보인다. 그래서 하중방향에 대한 섬유배열방향에 따른 파괴 저항성 평가가 필요하다. 이에 본 연구에서는 평직 CFRP 복합재료를 대상으로 다양한 섬유배열방향에 따른 파손강도 및 파괴 저항성 평가를 수행하였다.(섬유배열 방향: $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$) CT 시험편을 이용하여 모드 I 조건으로 시험을 수행하였다.

Keywords

References

  1. O. H. Kwon, S. Xu, and M. Sutton, "Evaluation of the damage mechanism in CFRP composite using computer vision", The Korean Socienty of Marine Engineering, vol. 34, no. 5, pp. 686-694, 2010. https://doi.org/10.5916/jkosme.2010.34.5.686
  2. S. Y. Bae, B. S. Kim, W. J. Kim, and M. Y. Kim, "Structural design of 3MW wind turbine blade, and their structural safety evaluation", The Korean Socienty of Marine Engineering Conference, pp. 289-290, 2010 (in Korean).
  3. C. S. Hong, "Test method for intralaminar fracture of composite", The Korean Society of Mechanical Engineers, vol. 30, no. 2, pp. 172-179, 1990 (in Korean).
  4. C. Hochard, P. A. Aubourg, and J. P. Charles, "Modelling of the mechanical behaviour of woven fabric CFRP laminates up to failure", Composites Science and Technology, vol. 61, pp. 221-230, 2001. https://doi.org/10.1016/S0266-3538(00)00199-8
  5. S. T. Peters (Ed), Handbook of Composites, 2nd ed., Chapman and Hall, pp. 794-809, 1998.
  6. C. Hochard, "Optimum design of laminated composite structures", Composite Structures, vol. 63, no. 2, pp. 159-165, 2004. https://doi.org/10.1016/S0263-8223(03)00144-2
  7. J. Xiao and C. Bathias, "Modified tan's model for the strength prediction of woven laminates with circular holes", Composites Engineering, vol. 3, no. 10, pp. 961-963, 1993. https://doi.org/10.1016/0961-9526(93)90004-4
  8. K. Kzauro, N. Katsunobu, S. Shoji, and F. Shunji, "Fracture toughness and acoustic emission of Carbon-Cloth/Epoxy composite", The Japan Society of Mechanical Engineers, vol. 50, 1260-1266, 1984. https://doi.org/10.1299/kikaia.50.1260
  9. D. H. Pahr and F. G. Rammerstorfer, "Experimental and numerical investigations of perforated CFRP woven fabric laminates", Composites Science and Technology, vol. 64, 1403-1410, 2004. https://doi.org/10.1016/j.compscitech.2003.11.001
  10. J. Wang, P. J. Callus, and M. K. Bannister, "Experimental and numerical investigation of the tension and compression strength of un-notchedand notched quasi-isotropic laminates" Composite Structures, vol. 64, no. 3-4, pp. 297-306, 2004. https://doi.org/10.1016/j.compstruct.2003.08.012
  11. G. B. Murri and J. R. Schaft, "Fatigue life methodology for tapered hybrid composite flexbeams", Composites Science and Technology, vol. 66, no. 3-4, pp. 499-508, 2006. https://doi.org/10.1016/j.compscitech.2005.06.010
  12. K. Gurney, "An introduction to neural networks", University College London Press, pp. 45-48, 1997.

Cited by

  1. Fatigue Life Prediction of CFRP using Fatigue Progressive Damage Model vol.52, pp.3, 2015, https://doi.org/10.3744/SNAK.2015.52.3.248
  2. Dynamic Analysis of Carbon-fiber-reinforced Plastic for Different Multi-layered Fabric Structure vol.26, pp.4, 2016, https://doi.org/10.5050/KSNVE.2016.26.4.375
  3. Mechanical Behaviors of CFRP Laminate Composites Reinforced with Aluminum Oxide Powder vol.18, pp.6, 2013, https://doi.org/10.9726/kspse.2014.18.6.166
  4. LNGC 2차 방벽에 적용된 Aramid 섬유의 Weibull 통계 분석을 이용한 피로특성 평가 vol.54, pp.5, 2013, https://doi.org/10.3744/snak.2017.54.5.415
  5. 열수노화 조건에서 레저선박용 탄소섬유강화플라스틱의 강도변화에 관한 실험적 연구 vol.55, pp.3, 2013, https://doi.org/10.3744/snak.2018.55.3.205
  6. 직물의 이축인장강신도 시험법 개발 및 검증 vol.57, pp.6, 2020, https://doi.org/10.12772/tse.2020.57.340