세이프 네트워크 기술

Safe Network Technologies

송종태 (J.T. Song) 넷컴퓨팅융합연구실 책임연구원
노성기 (S.K. Noh) 넷컴퓨팅융합연구실 책임연구원
박혜숙 (H.S. Park) 클라우드네트워크연구실 실장
박종대 (J.D. Park) 넷컴퓨팅융합연구실 실장
김성기 (S.G. Kim) 스마트네트워크연구부 부장

시바urv 테러의 급증으로 인해 시바urv 공간에서의 네트워크 역할이 중요해지고 있다. 이러한 시바urv 공격, 정보 유출 등에 의한 국가적 차원의 시바urv 안보 위협에 적극적으로 대처하고자 시바urv 네트워크기술 개발을 추진 중이다. 본고에서는 ① IP 주소 온라인 라우팅 기술, ② 전역적 제어 관리 시스템 기술 ③ 폐쇄방용 프로토콜 RFID Wi-Fi시스템기술, ④ 보안을 강화한 네트워크 SW 기술을 주축으로 하는 시바urv 네트워크의 핵심기술 및 주요 시스템의 기술개발 동향에 대해 알아본다.
I. 세이프 네트워크 개념 및 정의

서버 테러의 급증으로 인해 서버 공간에서의 네트워크 역할이 중요해지고 있다. 특히 패키징 국가 기간방을 효과적으로 사용하면서도, IP 네트워크의 구조적인 취약점을 해결할 수 있는 네트워크 구조 및 장비 개발 필요성이 증대하고 있다[1]. 이에 따라 최근 세계 각국은 서버 공격, 정보 유출 등에 의한 국가적 차원의 서버 안보 위협을 극복해 방지하기 위해 적대국 경쟁이 점점 네트워크 장비의 구매를 끼리는 경향을 나타내고 있다. 2012년 10월 미국 하원 정보위원회에서 국가 안보를 이유로 중국산 통신 장비 구매 불가을 선언한 것이 대표적인 예이다. 또한 미국에서는 2000년 초부터 국방장관 국방부의 세이프 네트워크를 위해 GIG (Global Information Grid)라는 이름으로 신기술 개발 및 구축을 추진 중이다[2].

특히 IoT(Internet of Things)를 비롯한 초연결 시대에 서버 네트워크 혁신기술 자체가 중요해지고 있으 며 가까운 미래에 예상되는 기업, 정부, 공공기관에서 모바일 단말을 활용한 스마트워크 수요 증가 및 클라우드, u-Health, Smart Grid 등 융합형 인프라를 통한 다양한 mission-critical 서비스 증가에 따라 네트워크의 신뢰성은 매우 중요시 되고 있다. 특히 1) 자료의 개방 2) 문제의 개방, 3) 의사 결정의 개방, 4) 예산의 개방, 5) 조직의 개방을 주 내용으로 하고 있는 정부 3.0[3]을 지원하고 창조 경제 실현을 위해 부처별 네트워크 제공은 물론, 서비스 융합 트렌드에 따른 스마트워크 요구를 수용하고 부처 간에 인프라와 정보를 효율적으로 공유하기 위한 세이프 네트워크 기술 개발이 필요성이 매우 높아지고 있다[4].

이러한 필요성으로 인해 세이프 네트워크의 기술개발이 시작되었으며 세이프 네트워크 혁신기술 개발을 통해 국내 기업, 정부, 공공기관의 세이프 네트워크 구축에 활용할 수 있는 편리함과 편익성을 얻어 세이프 네트워크의 ICT(Information Communication Technology) 혁신으로 발전시킬 계획이다.

(그림 1) 세이프 네트워크 개념도
세이프 네트워크 기술[1]은 ① 외부의 비신뢰적인 통신망으로부터 내부의 신뢰적인 통신망을 보호하기 위한 IP 주소 은닉(비공개) 기반 라우팅 기술, ② 네트워크 접속을 위한 단말/사용자 인증부터 네트워크에 대한 동적 정책 설정을 통한 자동적 제어 관리를 수행하는 전역 제어 관리 시스템 기술 ③ 사실상 내부 또는 비신뢰적인(Untrusted) 통신망을 경유하여 상호 연결된 원격에서 기관의 정보 시스템에 대한 접근 및 정보 공유/전달을 위한 페쇄망용 프로토콜리드 WiFi 시스템(단말, AP, 게이트웨이) 기술, ④ 안전한 모바일 OS, 차세대 암호화 SW, 가상화 기반 공격분석/탐지 SW 등 보안을 강화한 네트워크 SW 기술로 이루어져 있다.

본고에서는 세이프 네트워크 핵심기술에 대해 알아보고 세이프 네트워크의 핵심 시스템인 전역적 제어관리 시스템과 고신뢰 WiFi 시스템에 대한 국내외 주요 기술 동향을 알아본다.

II. 세이프 네트워크 핵심기술

세이프 네트워크 핵심기술은 많은닉 기술, 고신뢰 VPN(Virtual Private Network, 터널링) 기술, 지능형 네트워크 기술로 크게 구분된다.

1. 많은닉 기술

현재 미국 정부는 전세계 네트워크를 미국방성의 가용 네트워크로 만들 수 있어야 하므로 Future Internet이라는 새로운 네트워크 대신에 기존 네트워크상에서 Black Core Network이라는 오버레이 방식을 사용하여 기존 인터넷 인프라를 그대로 활용하면서, 오버레이 기반의 네트워크 보안 장치 및 보안통신 시그널링 기술을 이용하여, 보안성을 요구하는 연결에 네트워크 자원의 배타적 할당과 암호화를 통한폐쇄적 연결 서비스를 제공하고 있다. 많은닉 기술은 이를 더욱 발전시키는 개념으로 외부의 비신뢰적인 통신망으로부터 내부의 신뢰적인 통신망을 보호하기 위한 IP 주소(서버주소) 은닉하는 기술로써, 고신뢰의 안전한 국가망을 구축할 수 있는 독창적인 기술이다.

이와 유사한 기술로는 TOR(The Onion Routing)[5]기술이 있으며 TOR의 경우 프록시 서버 기반의 가상 네트워크를 구성하여, End-to-End 연결성을 제공하여, 사용자 IP나 개인 정보 등을 남기지 않고 접속할 수 있는 기술로써, 양파(onion) 라우팅이라는 이름처럼 여러 네트워크를 거치면서 자신이 보내는 정보를 검검이 암호화하는 방식으로 통신을 한다.

2. 고신뢰 VPN(터널링) 기술

VPN은 인터넷 또는 공용 네트워크를 논리적인 독립 네트워크를 구성하는 기술로서, 모바일 단말을 이용한 스마트폰의 활성화에 따라 보안성을 강화하는 안전한 VPN 기술에 대한 요구가 확산되고 있다.

특히, VPN은 사용자에게 이동 환경을 제공하기 위해서 이동성, 확장성, 관리 용이성, 다중 모바일 지원 기능들이 요구되고 있으나 단일 기술(PSoc, SSL(Secure Socket Layer), GRE, L2TP, MPLS(Multi-Protocol Label Switch), VPN 등)로는 사용자 요구사항을 충족하지 어렵다. 이에 따라 사용자 요구사항을 충족하기 위해 실시간 이용자/서비스 인식 및 이에 따른 트래픽 분리

표 1	기존 VPN과 본 과제에서 개발하고자 하는 고신뢰 VPN 기술의 비교					
기술	기밀성	보안	네트워크	소비성	QoS	확장성
암호화기반 VPN	패킷레벨	상	○	증	증	
터널기반 VPN	PPP/ISDN	중	○	증	증	
정책제어기반 VPN	지원하지 않음	하	×	증	하	
MPLS VPN	지원하지 않음	중	○	증	상	
세이프VPN	패킷레벨	상	○	상	상	

30 전자통신동향분석 제28권 제6호 2013년 12월
3. 지능형 네트워크(Intelligent Network) 기술

안정적인 인터넷 사용을 제공하기 위해 멀티미디어 컨텐츠 기반 새로운 응용 및 서비스 증가에 따른 응용별 세밀한 제어 필요성이 증대되고 있다.

특히, 단말 및 서버 중심의 다양한 네트워크 보안 대응 방법이 제시되고 있으나 네트워크 관점의 전위적인 보안 위협을 강화할 수 있는 지능화된 네트워크 장비에 대한 요구가 증대되고 있다. 따라서 지능형 네트워크 장비는 DPI(Deep Packet Inspection)를 이용한 응용 인지 기능, 플로우 기반 QoS 기능, 플로우 단위 통계/패킷 전수 수집 기능, 국가 기관 기밀 데이터의 신뢰성 있는 데이터 전송이 가능한 암호화/복호화 기능을 활용하여 통합 제어 관리와 연계한 솔루션 제공이 필요하다.〈표 2〉는 주요 장비 제조사의 지능형 네트워크 솔루션을 정리한 내용이다.

4. IAM(Identification and Authority Management) 기술

IAM은 아이디와 권한에 대한 관리 기술로, 시스템 내에서 직원, 고객, 계약자 등 사용자를 구분하고 설정된 권한에 따라 관리와 제한 사항을 적용하여 시스템 내 자원에 접근을 제어하는 기술로, 기업 모바일 보안 기술의 주요 항목이다. 최근의 개인 단말의 지능화 및 이동성 지원 요구의 증가, 클라우드의 확산 등에 따라 IAM 기술은 모바일 단말로 엔터프라이즈 클라우드 서버에 접속하는 스마트폰 환경을 안전하게 운용하기 위해서 필수 요구사항이 되고 있다.

이에 따라 IBM, CA Technology, RSA, EMC 등과 Oracle이 안정적인 솔루션과 모바일 기기 회사들과의 파트너십으로 IAM 시장을 주도하고 있으며, RSA/EMC, SafeNet, Gemalto, Symantec 등은 각각 디지털 증명, PKI(Public Key Interchange), 강력한 인증, 하드

<table>
<thead>
<tr>
<th>제조사</th>
<th>기술명</th>
<th>특징</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>Tivoli</td>
<td>사용자 프로바이저링</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- WSSO, ESSO, FSSO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 다양(multi-factor) 인증</td>
</tr>
<tr>
<td>CATechnologies</td>
<td>CA Arcot ID</td>
<td>이중(two-factor) 인증</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- VPN 인증</td>
</tr>
<tr>
<td>SafeNet</td>
<td>SafeNet Authentica-tion Manager</td>
<td>컨텐츠 기반 인증</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 모바일 인증 접속</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 확장성 용어</td>
</tr>
<tr>
<td>Entrust</td>
<td>IdentityGuard</td>
<td>기업망 보안 접속</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 모바일 단말 인증</td>
</tr>
</tbody>
</table>

〈표 3〉제조사별 IAM 기술의 특징
워커 토큰 다이바이스와 같은 서로 다른 시장에 주도권을 갖고 있다(표 3 참고).

III. 세이프 네트워크 전역적 제어 관리 시스템

전역적 제어 관리 시스템은 기존의 네트워크 제어 관리 기능과 보안 제어 관리 기능을 통합하여 사이버 테러 등의 각종 위협에 능동적 대응을 목표로 구성 장비들을 통합 운용하여 네트워크, 서버 및 서비스를 체계적으로 보호할 수 있는 시스템이다.

네트워크 제어 관리 시스템은 라우터, 스위치 등 네트워크 장비에 대한 구성, 장애, 성능을 모니터링하여, 문제 발생 시 즉각 대응으로 네트워크 문제를 해결하는 시스템으로 EMS(Element Management System), NMS(Network Management System) 등 목적에 맞게 구성하여 제도적으로 관리한다. 네트워크 제어 관리 시스템과 관련된 주요 벤더의 기술동향은 다음과 같다.

IN-SOFT에서는 서버, 네트워크 장비의 전반적인 상태를 모니터링(설정, 비전, 정보, CPU, Mem, Disk)하고 장애 발생 시 신속한 정해 처리 프로세스를 가능하여 최적화된 관리가 가능한 Service&System Manager 솔루션을 제공하고 있으며, SECUI.COM의 경우 보안 및 네트워크 제어 관리 솔루션으로 UTM(Unified Threat Management) 기능 및 IPv6 및 IPTV 등 최신 보안 적용 솔루션 기능을 제공(MF2)하고 있다.

Cisco의 경우 유선, 무선 및 보안 정책을 시각적으로 관리할 수 있는 통합 제어 관리 시스템으로 Cisco사의 스위치, 무선 AP, MSE(Mobility Service Engine) 및 WIPS(Wireless Intrusion Prevention System) 관리가 가능한 통합 솔루션을 제공한다.

Tail-f는 Network-wide 인터페이스(REST, Java, JavaScript, XML)를 통한 네트워크 장비 및 서비스의 접근을 허용하고 있으며, SDN 및 OpenFlow 기반 네트워크 제어 관리가 가능한 솔루션을 제공한다.

IBM은 네트워크 관리 기능을 기존 서버 및 스토리지 관리 기능과 함께 통합하여, 하나의 관리 도구를 사용하여 컴퓨팅 환경을 효과적으로 제어할 수 있는 솔루션을 제공한다.

보안 제어 관리 시스템은 기업에서 보안 장비(방화벽, IDS(Intrusion Detection System), IPS(Intrusion Protection System) 등을 설치하고, 원격에서 보안의 보안 시스템 정책 설정, 로그 분석 등을 통해 문제 발생 시 즉각 대응하여 문제를 해결하는 시스템으로 보안의 위협 증가 및 지능화에 따라 개별 시스템 관리에서 방화벽, IDS, IPS 등 보안 장비들과 로그 관리, 보안성 분석, 접근 통제, 백신 제어 시스템 등을 통합하여, 위험 분석과 위협 관리 기능을 제공하는 시스템으로 발전하고 있다.

JANUS사는 ETRI가 개발한 이상 트래픽 탐지 및 대응 기능을 포함한 플로우 기반의 스마트 라우터와 연동하여 보호 대상 서버의 자원 및 공격 이력 정보 공격자에 대한 세부 정보를 제공하는 솔루션을 제공하고 있으며, A3 Security는 사용자별 자원 접근 정책을 정의하고 예외 상황에 대한 탐지 및 보고 기능이 강화된 솔루션으로 SIEM(Security Information and Event Mangement)을 제공하고 있다.

이러한 움직임에 따라 SK텔레콤의 Enterprise Mobility는 적합하고 다양한 보안 기능을 제공하며, 대용량 처리와 높은 보안 수준 제공을 위한 솔루션으로 스마트 다이바이스 보안과 관리의 통합적인 제공을 통해 분실 도난 대비, 배터 기능 제어, 애플리케이션 관리가 가능한 솔루션으로 SSM(Smart device Security Management)을 제공하고 있다. 코닉소로의 경우무선 위협 데이터를 신속하게 통합해 실시간 탐지/차단 및 경보 기능, 위협 분석 기능, 이벤트 분석 기능, 보안 감사 및 대응 기능, 식별 및 인증 기능, 무결성 검사 기능, 암호화 통신 기능 등을 제공하는 아이에스테크에
스 v1.0 시스템을 보유하고 있다.

이러한 보안 제어 관리시스템은 방화벽, IDS, IPS, VPN 등과 같은 전통적인 보안 장비들은 특별한 기술발전 이슈 없이 UTM 장비로 통합되는 경향을 보이고 있으며 특히 방화벽의 경우, 서비스 제공자나 데이터센터를 제외하고는 적용 범위가 자속적으로 줄어들면서 단독 장비로 존재하기보다는 UTM 장비에 통합되는 경향을 보이고 있다.

UTM 시장의 선두 기업인 Check Point는 방화벽, VPN, 침입 탐지 및 방지, antivirus 등과 같은 보안 응용들을 통합적으로 제공하는 UTM 장비를 출시하고 있으며, Cisco도 VPN, 방화벽, IPS 와 함께 지능형 라우팅 기능을 통합적으로 제공하고 있다.

IV. 세이프 WiFi 기술

WiFi는 IEEE에서 802 위원회의 하부 그룹인 802.11 그룹에서 표준화를 주도하고 있으며 WiFi alliance가 802.11 표준에 대한 적합성 인증을 부여하고 있다. 스마트 단말 급증에 따른 모바일 트래픽이 급격히 증가하였으며, 이러한 변화에 대처 방안으로 WiFi 관련 기술이 주목받고 있으며, 일상생활뿐 아니라, 기업의 업무 환경에서도 WiFi가 차지하는 비중이 증가하고 있다.

하지만 WiFi는 전파 수첩, 병렬 접속, 중간자 공격 등을 통한 사용자 주요 정보 유출과 전파 교란(jamming), 대량의 패킷 전송을 이용한 서비스 거부 공격 등 기술적 보안 위험이 있으며, 취약한 보안 설정을 해킹해 병렬 접속 및 내부망으로 접속하는 등 다양한 공격유형이 가능하여 기술적 보안 취약점을 가지고 있어 중요 업무 데이터 전달 시 기밀 누출에 대한 위협성을 내포하고 있다.

또한 WiFi는 무선랜 장비 및 단말 관리 미흡, 사용자 보안 의식 결여로 인한 침입 위험, 전파 관리 미흡에 따른 외부자의 내부 AP 접속 및 내부자의 외부 AP 접속 해킹 등과 같은 관리적 보안 위험이 상존하고 있다. 실제 2010년, Air Tight Networks사에서 전 세계 27개 공항 대상 무선랜 취약성 조사 결과, 80% 이상이 보안에 취약한 것으로 나타났다. 또한 국내의 경우 전국의 무선 AP 42,997대에 대한 보안 현황 조사 결과, 약 44.8%가 보안이 설정되지 않고 운영되고 있음을 파악되었다[6].

WiFi 보안 취약점에 대처하기 위해 RF 관리, DFI 등을 수행하는 무선랜 제어기, 무선 구간의 신호를 수집, 분석, 대응을 수행하여 병렬 AP 및 단말 탐지/차단하는 WIPS 등의 방어 기술이 있다. 하지만 이러한 대응 기술은 무선 구간의 보안 문제점에 주안점을 두기 때문에 유무선 네트워크 통합 보안 구체에 의한 근본적인 WiFi 보안 대책에 대한 필요성이 대두되고 있다. 구체적으로는 통합 제어 관리를 통한 사용자 인증, CC(Compliance)인증 기준에 적합한 암호화 알고리즘 적용, VPN GW(Gateway)와 연동한 AP에서의 화이트리스트를 통한 접근 차단 기술 등이 필요하다.

1. 스마트 워크

세이프 WiFi 기술의 가장 큰 목적 중 하나는 스마트워크 지원이다. 스마트워크는 ICT 기술을 이용하여 언제 어디서나 편리하게 네트워크 상에서 함께 효율적으로 일할 수 있는 근무 형태를 의미한다.

안전한 스마트워크 서비스 제공을 위해 모바일 단말 기기의 환데이에 따른 무선 네트워크 활용도가 증가함에 따라 이와 관련된 보안 관리 기술 요구가 급증하고 있다. 이에 따라 무선 네트워크 접속 구간 보안 대책을 위하여 AP 제어 관리, VPN 등 관련 기술 적용이 필요하며, 서버 접속 구간에 대한 침입 차단/방지 및 보안 제어 관리 등이 필요하다.

2. 스마트 단말 관리

업무 환경 변화(본사화, 모바일화)로 인해 단말을 보호하는 모바일 단말 관리(MDM: Mobile Device Mana-
스마트 단말 관리 기술은 단말기 기능에 대한 관리/제어를 수행하는 MDM 기능으로부터 어플리케이션 통합 관리/제어(MAM: Mobile Application Management) 및 단말기가 접속하는 데터/컨텐츠에 대한 관리/제어를 포함하는 MEM(Mobile Enterprise Management) 형태로 발전하고 있다.

전 세계 40여 개 이상의 스마트 단말 관리 솔루션 벤더들은 다양한 플랫폼 지원, 서비스 관리 통합, 비용 관리 및 세계 어디서나 사용 가능한 솔루션 측면에서 차별화를 진행하고 있으며 특히 북미의 경우, 블랙베리 기기와 블랙베리엔터프라이즈(BES)의 조합은 기기 관리 및 보안과 관련된 최적의 표준으로 인정받고 있다.

스마트 단말 관리 시장은 소규모 MDM 벤더들이 낭독하고 있으나, 전세계 모든 지역에서 이용 가능한 솔루션은 소수이다. 최근에는 출입 통제 시스템과 연계된 위치 기반 서비스와 주변 기기 지원과 같은 기능들이 차별화 요소로 부각되고 있다.

국내의 경우, 지난지最近 소프트는 기존 MDM 기능에 출입 통제 기능을 추가하여 출입 지역에 따라서 스마트폰 일부 기능을 사용하지 못하도록 하는 기기 통제 기능 제공하고 있으며, 인프라에서의 보안 제어 관리, 보안 컨설팅을 통해 집약된 모바일 보안 기술을 MDM에 결합하여 모바일 오피스용 통합 모바일 보안 솔루션을 제공하고 있다. 안랩은 MDM 에이전트와 관리 서비스 외에도 단말기 보안 프로그램인 'V3 모바일엔터프라이즈'까지 포괄하는 AMC(AhnLab Mobile Center)를 제공하고 있다.

세계시장에서는 마이크로소프트, RIM, Citrix, Good Technology 등이 모바일 단말 관리 솔루션 시장을 주도하고 있다. RIM의 경우 대형 기업의 블랙베리 기기 관리를 위한 사실상의 표준인 BES와 35개 이상의 정책 실행이 가능한 중소기업용 솔루션인 BES Express를 제공하고 있으며 마이크로소프트는 안드로이드, iOS, Windows, 애플 C3, 유닉스, dede OS, dede Enterprise CE, dede 모바일에 대한 기본적인 관리를 위한 EAS(Exchange ActiveSync)를 제공하고 있다. Good Technology는 이메일 시스템에서 플랫폼 독립적인 암호화와 특정 어플리케이션을 허가하고 권한을 부여하는 GFE(Good For Enterprise)를 제공하고 있으며 Microsoft Exchange와 Lotus Notes와의 호환성 제공하고 있다. Citrix는 최근 유티라이즈를 인수하여 XenMobile MDM을 출시하였으며, 2013년 6월 XenMobile MDM과 XenMobile Enterprise의 일부 기능들을 담은 XNC(XenMobileNetscaler Connector)와 Nacsela MPX 22000를 출시했다.

3. 복합단말(BYOD: By Your Own Device)기술

스마트 단말 관리 기술을 지원하는 전용 단말에서 스마트 기기 단말 출현으로 인해 개인용과 업무용 기능을 한계 단말기로 수행하는 복합 단말기 형태로 발전하고 있다. 복합 단말기는 한 개의 단말기에 개인용 및 업무용 기능을 동시에 수행하기 때문에 단말기 보안, 개인용/업무용 데이터 분리 관리, 이중 운영체계 사용에 따른 최적화 기술 등이 요구된다.

스마트 단말 솔루션 제공 업체 단위의 데이터 보호 및 암호화가 이루어져 관련 서비스 및 기술이 특정 업체에 종속될 가능성이 있으며, 나이가 국가 공공 기관 정보 유출 가능성을 높은 가격임에도 불구하고 고객사의 커스터마이징을 하여 사용하는 심리적인 요소가 있어 더욱 중요하다.
정 이슈에 유연하게 대응하지 못하는 등의 국내에서 요구하는 보안 기능에 대해 충족하지 못하였다. 또한 복합 단말기의 원격 점검을 위해 업무용 이외에 개인용 데이터 열람이 가능하며 프라이버시 침해 가능이 있다.

VMware는 Horizon Mobile은 가장 드라이브 기술을 통하여 한 개 단말기에 두 개의 운영체계를 두어 개인용과 업무용 운영체계를 분리하는 사용하는 방식을 제공하고 있으며 삼성은 2013년 MWC에서 데이터 센터의 보안 솔루션을 제공하는 centrisys의 기술을 도입한 단말기 보안 솔루션으로 녹스(KNOX)를 발표하였다. 녹스는 Dual Persona의 콘셉트를 적용해 한 개 단말기를 개인용과 업무용 영역으로 구분하고 아이콘 터치로 단말기를 개인용과 업무용으로 전환시킬 수 있는 MDM 솔루션으로 하나의 단말기에 압호화된 'Container'라는 별도 저장 공간을 마련하여 AES 256bit key로 압호화하여 업무용 데이터를 저장하고 있다. 하지만 녹스, VMware Horizon Mobile의 솔루션의 경우 협력업체에 한해서만 API를 제공하여 기능 구현 및 기술 지원에 한계가 있다.

기업망을 중심으로 개발된 현재의 스마트 단말기 관리의 국가 공공망에 적용을 위해서는 네트워크와 연계된 강화된 보안 기술이 추가되어야 하며 데이터 보안 등급에 따른 차별화된 보안 알고리즘(ARIA, SEED)을 적용한 데이터 암호화 및 관리 기술, 서비스 구역 내의 보안 등급 지역에 따른 차별화된 접속 인증/허가 기술, MAC, IP 어드레스, IMEI(International Mobile Equipment Identity)/IMSI(International Mobile Subscriber Identity), USIM(Universal Subscriber Identity Module)정보 등 다양한 정보를 활용하는 mPAK인증 기반 동이 통합적으로 이루어져야 한다.

V. 결론

앞에서 살펴본 바와 같이 세이프 네트워크 기술은 네트워크뿐 아니라 단말, 무선, 서버 등의 다양한 기술이 결합되어 이루어지는 기술로 IoT를 비롯한 초연결 시대로 발전함에 따라 사이버 위협으로부터 방어를 위한 네트워크의 역할이 증가하고 있으며 이에 따라 세이프 네트워크 기술의 중요성이 커지고 있다.

 Weird Network Technology

[Table]

<table>
<thead>
<tr>
<th>Service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYOD</td>
<td>By Your Own Device</td>
</tr>
<tr>
<td>CC</td>
<td>Component Compliance</td>
</tr>
<tr>
<td>DPI</td>
<td>Deep Packet Inspection</td>
</tr>
<tr>
<td>EMS</td>
<td>Element Management System</td>
</tr>
<tr>
<td>GIG</td>
<td>Global Information Grid</td>
</tr>
<tr>
<td>GRE</td>
<td>Generic Routing Encapsulation</td>
</tr>
<tr>
<td>GW</td>
<td>Gateway</td>
</tr>
<tr>
<td>IAM</td>
<td>Identification and Authority Management</td>
</tr>
<tr>
<td>ICT</td>
<td>Information Communication Technology</td>
</tr>
<tr>
<td>IDS</td>
<td>Intrusion Detection System</td>
</tr>
<tr>
<td>IMEI</td>
<td>International Mobile Equipment Identity</td>
</tr>
<tr>
<td>IMSI</td>
<td>International Mobile Subscriber Identity</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>IPS</td>
<td>Intrusion Protection System</td>
</tr>
<tr>
<td>MAM</td>
<td>Mobile Application Management</td>
</tr>
<tr>
<td>MDMA</td>
<td>Mobile Device Management</td>
</tr>
<tr>
<td>MEM</td>
<td>Mobile Enterprise Management</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multi-Protocol Label Switch</td>
</tr>
<tr>
<td>MSE</td>
<td>Mobility Service Engine</td>
</tr>
<tr>
<td>NMS</td>
<td>Network Management System</td>
</tr>
<tr>
<td>PKI</td>
<td>Public Key Interchange</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>SSO</td>
<td>Single Sign On</td>
</tr>
</tbody>
</table>
참고문헌