
In this work, we develop a simulation method to predict 
a two-dimensional luminance distribution method using a 
circuitry simulation. Based on the simulation results, we 
successfully fabricate large area (90 mm × 90 mm) 
transparent organic light-emitting diode panels with high 
luminance uniformity. 
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I. Introduction 

Organic light-emitting diodes (OLEDs) are a promising 
light source for lighting applications. OLED lighting can 
offer distinct features, such as transparency, color tunability, 
and a high color rendering index [1]-[5]. In particular, 
transparent OLEDs (TOLEDs) have been actively 
investigated for large-size OLED displays, TOLED displays, 
and TOLED lighting [1], [2], [6]-[9]. A typical TOLED 
structure consists of a transparent anode composed of 
indium-tin-oxide (ITO), organic layers, and a transparent 
cathode. In TOLEDs, a transparent cathode with a LiF\Al\Ag 
structure is frequently used. However, the low transparency 
and high sheet resistance of a cathode limit their size and 
performance capability. Recent research activities have 
focused on an improvement of the transmittance and sheet 
resistance of a cathode [6]-[9]. The sheet resistance across the 
anode and cathode causes nonuniformity in the luminance 
distribution. To design high-quality large-area TOLED panels, 
the luminance distribution of the panels must be known. The 
luminance distribution in larger area panels is determined by 
the interplay between the current distribution of the anode 
and cathode, making it rather difficult to predict the 
distribution. Previous OLED simulations have mainly 
focused on the mathematical modeling of electrical 
characteristics of OLEDs [10]-[13] without showing the 
luminance distribution across the emitting surface. In this 
work, we use a two-dimensional circuitry simulation method 
to predict the luminance distribution in TOLEDs. The 
simulation results are successfully applied to predict the 
luminance distribution of a large area (90 mm × 90 mm) 
TOLED lighting panel. 
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II. Modeling and Simulation 

1. Two-Dimensional OLED Circuit Modeling 

In this work, we aim to investigate the luminance uniformity 
of white TOLED lighting panels. We used a two-dimensional 
OLED circuit model, shown in Fig. 1, in conjunction with a 
circuit simulator, SMART-SPICE. The simulation cell is 
composed of connected resistive components distributed in a 
two-dimensional fashion. The crossed resistors represent unit 
area of the anode and cathode planes. Each node, Anodes 1 
through 4 and Cathodes 1 through 4, is connected to an 
adjacent node of a nearby simulation cell. The input variable is 
the applied voltage, and the outputs are the current distributions 
and luminance in the simulation cell. The simulator uses a 
diode model, which mimics the electrical configuration of 
OLEDs. We use 100 cells and 1,171 resistor elements, 
including outer electrodes. Each resistor has half the value of 
the sheet resistance of the electrodes. In this scheme, the current 
distribution is obtained by calculating each diode’s electrical 
response to the applied voltage. Because the current 
distribution is directly proportional to the emission uniformity, 
the luminance distribution of the given OLED panel can be 
 

 

Fig. 1. (a) Schematic circuitry diagram and (b) its perspective
view of two-dimensional OLED model. 
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deduced.  

2. Extracting Luminance from Current Density 

In SMART-SPICE simulations, we do not obtain the 
luminance (L) distribution, but rather the current distribution. 
There is therefore a need to correlate the current density (J) to 
the luminance. To establish the L-J relation, we fabricate and 
measure the actual white OLEDs, which have an emission area 
of 2 mm × 2 mm. The white OLEDs have a stacking of a glass 
substrate (0.7 mm), an ITO anode (70 nm), organic layers  
(210 nm), and a LiF-Al cathode (100 nm). The current density-
voltage-luminescence (JVL) characteristics are measured with 
a source/measure unit (Keithley 238) and a spectroradiometer 
(Minolta CS-2000). The JVL characteristics obtained from the 
OLED with an emission area of 2 mm × 2 mm are used as the 
starting data for obtaining the L-J relation. Figure 2 shows that 
it is possible to fit the current density accurately in the voltage 
range of interest. An electroluminescence curve fitting is 
performed in a voltage range of 0 V to 5.5 V at under    
3,000 cd/m2. During the fitting process, to avoid the complexity 
of physical SPICE modeling, we adopt an electrical curve 
fitting method to obtain the current density profile. In the next 
step, using the fitted JV characteristics, the LV characteristics 
are simulated. The simulated LV characteristics closely match 
the measured LV characteristics. The simulated L curve lies 
within an error range of 5% of the measured L. In our 
luminance range, the output luminance is found to be directly 
proportional to the output current. Based on these results, we 
draw a conclusion that our approach can be implemented to 
properly predict L by using the JV characteristics. 

3. OLED Panel and Anode Design 

Because the luminance distribution is determined by the 
electrical uniformity and sheet resistance of the cathode and 
 

 

Fig. 2. OLED JVL characteristics and fitted electrical (open red)
and simulated luminance (solid red) curves. Blue lines are
measured values. 
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Fig. 3. Simulated luminance contour diagrams at each type of 
OLED external electrode: (a) four pairs of anodes and 
cathodes and (b) two pairs of anodes and cathodes. 
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anode, it is important to optimize both components. 
Subsections II.3 and II.4 are mainly concerned with this task. 
In this work, we choose an OLED panel of 90 mm × 90 mm, 
which has eight external electrodes on the edges for applying 
voltage.  

Figure 3 shows two compositions of electrodes and their 
simulated luminance distributions. The first OLED tile, shown 
in Fig. 3(a), has two pairs of anodes and cathodes, in which 
electrodes of the same polarity are facing each other.    
Figure 3(b) shows an OLED tile that has a complex outline, 
composed of eight electrodes. Starting from a cathode at the 
corner, cathodes and anodes are positioned in an alternating 
fashion. This type of outline has a luminance distribution of an 
inverted dome shape. The distribution shown is uniformly 
symmetric with a low directional bias. 

Owing to the sheet resistance of an ITO anode, the anode of 
a large area OLED panel requires electrical compensation. This 
can be achieved through the use of auxiliary metal layers, 
which leads to a marked improvement in luminance uniformity. 
The design parameters of the metal meshes are the width and 
spacing of the mesh lines and the fill factor. The sheet 
resistance and luminance uniformity are directly dependent 

 

Fig. 4. Simulated two-dimensional luminance distribution 
diagram at each type of cathode with sheet resistance 
of (a) 1 Ω/sq and (b) 5 Ω/sq. 
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upon these parameters. In this work, we consider a Mo/Al/Mo 
mesh configuration. Based on the resistivity calculations, we 
design a metal bus to have a thickness of 600 nm, a width of  
26 μm, and a bus line spacing of 750 μm. This gives a fill 
factor of 95%. 

4. Cathode Electrode Design 

The luminance distribution of a TOLED is strongly 
influenced by the sheet resistance of the transparent electrode. 
Obviously, from a transmittance perspective, it is desirable to 
have a thin transparent cathode. However, from an electrical 
perspective, because a high sheet resistance is expected, a thin 
cathode is not preferred. As a result, a highly transparent 
TOLED has a rather poor luminance distribution compared 
with conventional bottom emission OLED panels. Figure 4 
compares the simulated bottom luminance distribution of two 
TOLED panels, which have different sheet resistances of     
1 Ω/sq and 5 Ω/sq. In both cases, because the central region is 
the most remote from the electrode, the luminance distribution 
has an inverted dome shape. As the sheet resistance increases,  
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Fig. 5. Simulated luminance distribution uniformity and pseudo-
transmittance of TOLED with cathode variation. 
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not only is the average luminance value lower but the 
distribution uniformity is also low, with a steeper rate of 
luminance decrease toward the central region. The overall 
uniformities of the 1-Ω/sq and 5-Ω/sq cathodes are 93% and 
80%, respectively. The luminance uniformity (UL) is obtained 
from the average luminance value (LAv.) and standard deviation 
of luminance distribution, LS.D. (UL= [1 – LS.D./LAv.] × 100).  

To obtain uniformity as a function of sheet resistance, we 
perform simulations in the same manner shown in Fig. 4. As 
the sheet resistance increases, the uniformity deteriorates, as 
shown in Fig. 5. During electrical simulations, it is not possible 
to obtain an optical transmittance. We therefore used literature 
information to deduce the relationship between sheet resistance 
and optical transmittance [1], [2], [6]-[9]. As expected, the 
transmittance improves as the sheet resistance increases. 
Because there exists a tradeoff between electrical conductivity 
and optical transmittance, one must choose a cathode thickness 
that gives an acceptable luminance uniformity and 
transparency. Because the transmittance can be optically 
improved through the use of a capping layer (CL), we focus on 
the uniformity or cathode sheet resistance. To have a 
uniformity of higher than 70%, the sheet resistance must be 
lower than 6 Ω/sq, as shown in Fig. 5. Based on our previous 
work on TOLEDs, we choose a LiF/Al/Ag cathode (1 nm,  
1.5 nm, and 15 nm, respectively), which has a measured sheet 
resistance of 5 Ω/sq [6].  

III. Experiments and Simulations on Transparent 
OLED Lighting Panels 

1. Fabrication of OLED Lighting Panels 

Based on the optimized cathode and anode designs, we 
fabricate white OLED panels of 90 mm × 90 mm in external 
size and 78 mm × 78 mm in luminescence size. Each panel has 

 

Fig. 6. Image of fabricated TOLED panel and auxiliary metal
meshes. 

3 mm

 
 
eight external electrodes. Each panel is fabricated using the 
following configuration: a glass substrate (0.7 mm), an ITO 
anode (140 nm), organic layers (210 nm), a cathode (17.5 nm), 
and a CL (60 nm). The residue on the ITO surface is cleaned 
off using a standard oxygen plasma treatment. The ITO anode 
is furnished with an auxiliary metal mesh, as previously 
described in subsection II.3. The OLED grade materials are 
purchased and used without further purification. All organic 
layers are deposited in a high vacuum chamber below  
6.6 × 10–5 Pa. Thin films of LiF, Al, and Ag are deposited as a 
cathode electrode. The CL is introduced to improve the 
transmittance for a given sheet resistance [6]. The capping 
layer has an optical function of inducing an interference effect 
in the OLED. The OLED panels are transferred directly from 
the vacuum into an inert environment glove box, in which they 
are encapsulated using a UV-curable epoxy and a glass cap 
with a moisture getter. Figure 6 shows an actual image of the 
fabricated TOLED and auxiliary metal meshes. The 
transparency is high enough to discern the letters on a business 
card. 

2. Simulations versus Measurements 

Figure 7 shows the simulated and measured luminance 
distribution in the TOLED panel shown in Fig. 6. The 
simulated distributions in Fig. 7(a) are remarkably similar to 
those shown in Fig. 4(b), but the distribution diagram is steeper.
 The main difference between Fig. 7(a) and Fig. 4(b) is the 
simulation condition of the driving luminance. Figure 7(a) 
shows a simulated distribution under a high luminance 
condition, whereas Fig. 4(b) shows a simulated distribution 
under low luminance. Under a high luminance condition, an 
OLED requires higher current density than when under low 
luminance. Accordingly, the problem of having an IR drop is 
more severe in a high luminance condition, leading to a steeper 
distribution, as reflected in the diagram in Fig. 7(a). Generally, 
under a high luminance condition, the nonuniformity caused 
by an IR drop is more serious than the case under a low 
luminance condition. Figure 7(b) shows the measured 
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Fig. 8. Snapshot of transparent OLED lighting window.  
 
luminance distribution of a TOLED panel. A voltage of 5.3 V 
is applied to the panels during both the simulation and 
measurement. The measured luminance distribution is in 
accordance with the simulated distribution. The luminance 
uniformities of the simulated and fabricated OLED panels are 
78.6% and 79%, respectively. 

Figure 8 shows TOLED tiles fabricated based on the 
simulation and optimization results. Clearly, the overall 
emission is very uniform. The results reflected in Figs. 7 and 8 

show that our simulation method and electrode optimization 
approach are very useful in predicting the luminance 
distribution and uniformity of large-area TOLED panels. 

IV. Conclusion 

Predicting the overall uniformity of large-area OLED panels 
is very important. In this work, we developed an effective 
method to predict the luminance distribution of OLED panels. 
To be specific, by combining a two-dimensional OLED circuit 
model and a SMART-SPICE simulator, the current density 
distributions across an OLED panel of 90 mm × 90 mm were 
obtained. Using the luminance-current density relationship, the 
luminance distribution was obtained. In this study, we 
suggested and demonstrated a practical method for establishing 
the luminance-current density relationship. The usefulness of 
our method was verified using TOLED lighting panels with 
external electrodes. Our work suggests a new approach that can 
be applied to predict and design large-area OLED panels. 
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