
In this paper, we propose a superjunction trench gate 
MOSFET (SJ TGMOSFET) fabricated through a simple 
p-pillar forming process using deep trench and boron 
silicate glass doping process technology to reduce the 
process complexity. Throughout the various boron doping 
experiments, as well as the process simulations, we 
optimize the process conditions related with the p-pillar 
depth, lateral boron doping concentration, and diffusion 
temperature. Compared with a conventional 
TGMOSFET, the potential of the SJ TGMOSFET is more 
uniformly distributed and widely spread in the bulk 
region of the n-drift layer due to the trenched p-pillar. The 
measured breakdown voltage of the SJ TGMOSFET is at 
least 28% more than that of a conventional device. 
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I. Introduction 

A power MOSFET is an essential component in switching 
mode power supply circuits and inverter systems. The power 
MOSFETs used in power converters operate as switching 
devices, and their associated dissipation loss consists of 
conduction loss while the power MOSFET is in an on state and 
switching loss when it turns on and off. To reduce the 
dissipation loss of a power MOSFET, a minimization of the 
on-resistance per unit area (RON•A) and gate-to-drain charge is 
normalized to the on-resistance (RON•QGD) [1], [2]. However, 
for a conventional power MOSFET, there is a fundamental 
tradeoff between the breakdown voltage and specific RON, and 
it is not thought to be possible to obtain an RON•A value that 
exceeds the silicon limit. A superjunction (SJ) structure is an 
innovative breakthrough that overcomes this limitation and is a 
fitting way to achieve both a low RON and high breakdown 
voltage of above 400 V [3]-[5]. An SJ requires the formation of 
multiple p-pillars and n-pillars in the drift region, and its 
concept is based on the charge compensation principle. The 
excess charge in an n-pillar is counter balanced by the adjacent 
charges in the p-pillar, and a uniform field distribution can thus 
be achieved [6]. These alternating p- and n-pillars make it 
possible to achieve a charge balance. SJ trench gate MOSFETs 
(SJ TGMOSFETs) are typically manufactured by creating 
multiple columns of p-pillars within a low-impurity n-type 
epitaxial layer, which is grown on a heavily doped n+ substrate. 
A multistep epitaxial growth process builds up the columns 
layer by layer, thereby increasing the total implanted layer 
thickness until the required voltage tolerance is obtained. 
Therefore, the low throughput of the epitaxial growth and the 
complicated production steps of this process make it difficult to 
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enhance the productivity or cut the cost [7]-[9]. 
In this paper, we propose a simple p-pillar formation process 

to overcome the process complexity inherent to a multilevel 
epitaxial growth approach that creates a p-pillar region through 
multiple high-energy ion implantations. The p-pillar region is 
built from the lateral boron diffusion from the boron silicate 
glass (BSG) film and annealing after the deep etching process 
of the silicon. Considering the required breakdown voltage, 
process optimization, such as regarding p-pillar depth and BSG 
doping concentration, is conducted using a two-dimensional 
SILVACO process and device simulations.  

II. Experiments  

SJ TGMOSFETs with a BSG doping process technology are 
fabricated on an n-type epitaxial layer grown on a heavily 
doped n+ (100) substrate. The resistivity of the epitaxial layer is 
0.6 Ω•cm to 1.0 Ω•cm, and its thickness is 10 µm. First, a    
p-body region is formed with a boron ion implantation. The 
trench gate etching process is done after local dry oxidation of 
silicon and n+ source formation in the p-body layer. The post 
trench etching treatment carried by the SC1 cleaning and high-
temperature sacrificial oxidation is done to reduce the 
roughness of the trench sidewall and eliminate the damaged 
layer of the trench surface. The resulting width of the trench 
gate is 0.8 μm, and its depth is 1.6 μm. To improve the gate 
oxide integrity, we use a stacked gate oxide that combines the 
thermal and chemical vapor deposition oxides. The polysilicon 
gate electrode is formed through polysilicon deposition and 
doping processes. To overcome the disadvantages inherent to 
the multilevel epitaxial growth method, we create an SJ 
structure with the deep trench etching and lateral boron doping 
techniques. A high aspect ratio trench is built through reactive 
ion etching, while the deposited TEOS oxide is used for the 
deep trench etching mask layer. After the formation of a deep 
trench under a p+ source region, a boron-doped BSG film 
1,000 Å thick is deposited under a processing temperature of 
730°C. The removal of the BSG film and a thermal annealing 
are then conducted to form a p-pillar. Finally, deep trench 
filling and metallization processes are carried out. Figure 1 
shows the cross-sectional structure of the SJ TGMOSFET. 
Owing to the use of a high aspect ratio trench and lateral boron 
doping techniques for this device, the processing steps can be 
simplified, and the manufacturing throughput can be boosted 
and the cost reduced. Detailed scanning electron microscopy 
(SEM) images after boron lateral diffusion and oxide filling 
inside the deep trench region are shown in Fig. 2. Figure 2(a) 
illustrates the conventional TGMOSFET fabricated using the 
high density trench etching process described in our previous 
study [10], whereas Fig. 2(b) shows an SJ TGMOSFET  

 

Fig. 1. Cross-sectional structure of SJ TGMOSFET fabricated
with deep trench and BSG doping process technologies.
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Fig. 2. SEM photograpies of (a) conventional TGMOSFET and
(b) SJ TGMOSFET with deep trench and lateral boron
diffused p-pillar regions. 
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fabricated with a deep trench and BSG lateral doping 
technologies for the p-pillar. In Fig. 2(b), the dashed line 
represents an estimated p-pillar from the process simulation 
and the secondary ion mass spectroscopy (SIMS) data. The  
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Fig. 3. Boron concentration and depth profile simulated and
measured using SIMS for p-pillar region. 
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depth and width of the trench are evaluated to be 10 μm and 
0.85 μm, respectively, and have a high aspect ratio of about 
11.8. Despite the trench having a high aspect ratio, as shown in 
Fig. 2(b), we obtain a desirable trench profile by means of the 
optimized combination of etching gas chemistries. The 
rounded corner of the trench, which effectively reduces electric 
field crowding, results from the hydrogen annealing technique 
[9].  

Due to the moderately positive profile of the trench, the BSG 
film is deposited more uniformly inside the trench. The p-pillar 
doping is accomplished through this BSG film deposition and 
thermal annealing. For the purpose of avoiding excessive 
boron diffusion, the BSG film is removed before the thermal 
annealing. To achieve the desired breakdown voltage, the total 
doping concentration between the p-pillar and n-epi columns 
should be balanced. In the manufacturing field, it is difficult to 
make the doping concentrations of the p-pillar and n-pillar 
exactly equal, and the impact of the imbalance results in a 
breakdown voltage fluctuation. Particularly for an 
SJ TGMOSFET fabricated through lateral boron diffusion, the 
control of the boron concentration and profile is most critical. 
Throughout the various boron doping experiments, as well as 
the process simulations, we confirm the optimal boron 
concentration and the diffusion temperature for a better charge 
balance condition. Figure 3 shows the boron profile and 
concentration, which are analyzed using SIMS, and compares 
them with the process simulation results. The peak boron 
concentration diffused from the BSG film is approximately 
5.0×1016 cm–3. The p-pillar junction is located at 0.8 μm from 
the side wall of the trench. The slight discrepancy of doping 
concentration between the simulation and SIMS data results 
from the different diffusion coefficients due to the different 
silicon orientations. Moreover, the relationships between the  

 

Fig. 4. Breakdown voltage variation depending on doping
concentration of p-pillar. 
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diffusion depth depending on various process conditions and a 
variation in breakdown voltage are investigated. 

III. Results and Discussion  

To determine the optimum doping concentration of the 
p-pillar for the desired breakdown voltage, we simulate the 
breakdown voltage depending on the different doping 
concentrations of the p-pillars. When increasing the doping 
concentration of the p-pillar, the breakdown voltage is 
decreased, as shown in Fig. 4. However, for the 
SJ TGMOSFET fabricated with 0.6 Ω•cm epi resistivity, the 
maximum breakdown voltage is observed to be at a p-pillar 
concentration of 4.0×1016 cm–3. This proves that an equal 
charge balance between the p-pillar and n-pillar occurs at that 
concentration. Investigating the effects of the trenched p-pillar 
on the electric field distribution and breakdown voltage of the 
MOSFET, a two-dimensional electric field and current flow 
simulations are conducted.  

Figure 5(a) shows the simulated potential distribution of a 
conventional MOSFET with high density. In Fig. 5(b), the 
simulated potential distribution of the SJ TGMOSFET 
fabricated using a lateral boron diffusion method is presented 
and compared with that of a conventional TGMOSFET. The 
potential distribution of the conventional TGMOSFET is 
concentrated at the drain near the channel region, as shown in 
Fig. 5(a). 

On the other hand, the potential of the SJ TGMOSFET is 
more uniformly distributed and widely spread in the bulk 
region of the n-drift layer under an applied drain voltage of 
140 V. It is considered that these potential distributions of the 
SJ TGMOSFET reflect the influence of the proper charge 
balance between the p- and n-pillar regions.  

Figure 6 illustrates the simulated current flows for 
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Fig. 5. Potential distribution of SJ TGMOSFET in this
simulation: (a) conventional TGMOSFET and (b)
SJ TGMOSFET. 
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Fig. 6. Current flow simulations: (a) conventional TGMOSFET
and (b) SJ TGMOSFET. 
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conventional and SJ TGMOSFETs. The current flow in the 
SJ TGMOSFET comparatively spreads uniformly through the 
entire n-drift region, as shown in Fig. 6(b). However, the 
current flow of the conventional TGMOSFET in Fig. 6(a) 
tends to crowd in the upper channel region and concentrate into 
the center of the n-drift region. This phenomenon can lead to a 
lower breakdown voltage for the conventional TGMOSFET. 
We also simulate a breakdown voltage of an SJ TGMOSFET 
to evaluate the effect of a boron-doped p-pillar on the 
breakdown voltage. As shown in Fig. 7, the breakdown voltage 
of an SJ TGMOSFET is higher than that of a conventional 
TGMOSFET. We also measure the breakdown voltages of the 
conventional and SJ TGMOSFET. As shown in Fig. 8, the 
breakdown voltage of the SJ trench gate devices is 
approximately 28% higher than that of conventional trench 
gate devices owing to the effect of the charge balance between 
the boron-doped p-pillar and n-drift region. However, based on 
the device simulation results, the RON of the SJ TGMOSFET is  

 

Fig. 7. Breakdown voltage simulations of conventional TGMOSFET
and SJ TGMOSFET. 
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Fig. 8. Measured breakdown voltages of conventional and
BSG-doped SJ TGMOSFET. 
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approximately 16% higher than that of the conventional 
TGMOSFET. 

IV. Conclusion 

This paper described an SJ TGMOSFET manufactured 
using a p-pillar forming process through the use of a deep 
trench and BSG doping technology to reduce the complexity 
of the process. The p-pillar region was built from the lateral 
boron diffusion from the BSG film and the annealing after the 
silicon deep etching process. The effects of the lateral boron 
doping concentration in the deep trenches on the breakdown 
voltages were investigated both theoretically and 
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experimentally. Through various boron doping experiments 
and device simulations, we optimized the process conditions 
related with the p-pillar depth, boron doping concentration, and 
diffusion temperature. Compared to a conventional 
TGMOSFET, the potential distribution of the SJ TGMOSFET 
is more uniform and widely spread in the bulk region in the 
n-drift layer. As a result, the measured breakdown voltage of an 
SJ TGMOSFET increases over 28% compared to the 
conventional TGMOSFET owing to the effect of an excellent 
charge balance between the boron-doped p-pillar and n-drift 
region. However, from the device simulation results, the on-
resistance of the SJ TGMOSFET is approximately 16% higher 
than that of the conventional TGMOSFET. 
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