DOI QR코드

DOI QR Code

Molecular Computing Simulation of Cognitive Anagram Solving

애너그램 문제 인지적 해결과정의 분자컴퓨팅 시뮬레이션

  • Received : 2014.09.17
  • Accepted : 2014.10.22
  • Published : 2014.12.15

Abstract

An anagram is a form of word play to find a new word from a set of given alphabet letters. Good human anagram solvers use the strategy of bigrams. They explore a constraint satisfaction network in parallel and answers consequently pop out quickly. In this paper, we propose a molecular computational algorithm using the same process as this. We encoded letters into DNA sequences and made bigrams and then words by connecting the letter sequences. From letters and bigrams, we performed DNA hybridization, ligation, gel electrophoresis and finally, extraction and separation to extract bigrams. From the matched bigrams and words, we performed the four molecular operations again to distinguish between right and wrong results. Experimental results show that our molecular computer can identify cor rect answers and incorrect answers. Our work shows a new possibility for modeling the cognitive and parallel thinking process of a human.

애너그램은 주어진 문자들을 재배열하여 숨겨진 단어를 찾아내는 철자바꾸기 놀이로, 문제를 빨리 풀어내는 사람들은 제약 만족 네트워크의 병렬적 탐색에 의해 문제를 해결한다. 본 연구에서는 이러한 인지적 현상을 모델링한 분자 애너그램 풀이 알고리즘을 제시하였다. 문자를 DNA 서열로 인코딩하고, 문자 DNA 가닥을 연결하여 바이그램과 단어 서열을 만들었다. DNA 혼성화, 연결, 젤 전기영동, 추출 연산을 수행해 문자와 바이그램 집합으로부터 답을 찾는 데 필요한 바이그램을 추출한 후, 추출한 바이그램과 단어 집합으로부터 다시 네 가지 DNA 연산을 반복하여 답을 찾는다. 분자 실험 결과 분자 컴퓨터는 정답인 단어와 오답인 단어를 구분해낼 수 있었다. 이를 통해 인간의 병렬적 사고과정을 분자 컴퓨터로 모델링할 수 있는 가능성을 보였다.

Keywords

References

  1. L. M. Adleman, "Molecular computation of solutions to combinatorial problems," Science, Vol. 266, No. 5187, pp. 1021-1024, Nov. 1994. https://doi.org/10.1126/science.7973651
  2. R. S. Braich, N. Chelyapov, C. Johnson, P. W. Rothemund, and L. M. Adleman, "Solution of a 20-variable 3-SAT problem on a DNA computer," Science, Vol. 296, No. 5567, pp. 499-502, Mar. 2002. https://doi.org/10.1126/science.1069528
  3. L. Qian. E. Winfree, and J. Bruck, "Neural network computation with DNA strand displacement cascades," Nature, Vol. 475, No. 7356, pp. 368-372, Jul. 2011. https://doi.org/10.1038/nature10262
  4. M. R. Lakin, A. Minnich, T. Lane, and D. Stefanovic, "Towards a biomolecular learning machine," Proc. of the Unconventional Computation and Natural Computation, pp. 152-163, 2012.
  5. B.-T. Zhang, H.-Y. Jang, "A Bayesian Algorithm for In Vitro Molecular Evolution of Pattern Classifiers," DNA computing, Vol. 3384, pp. 458-467, Springer, 2005. https://doi.org/10.1007/11493785_39
  6. L. R. Novick, S. J Sherman, "The effects of superficial and structural information on online problem solving for good versus poor anagram solvers," The Quarterly Journal of Experimental Psychology, Vol. 61, No. 7, pp. 1098-1120, Jun. 2008. https://doi.org/10.1080/17470210701449936
  7. D. B. Grimes, M. C. Mozer, "The interplay of symbolic and subsymbolic processes in anagram problem solving," Proc. of the Neural Information Processing Systems, 13, pp. 17-23, 2000.
  8. E. S. Lee, "DNAgram: Molecular Simulation of Anagram Problem Solving," Seoul National University, 2003. (in Korean)
  9. J.-H. Lee, H.-S. Chun, E. S. Lee, J.-H. Ryu, and B.-T. Zhang, "Simulation of Anagram Solving by Molecular Computer," Proc. of the 40th KIISE Fall Conference, Vol. 40, pp. 723-725, 2013. (in Korean)
  10. N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos, and E. Birney, "Towards practical, high-capacity, low-maintenance information storage in synthesized DNA," Nature, Vol. 494, pp. 77-80, Feb. 2013. https://doi.org/10.1038/nature11875
  11. B.-T. Zhang, J.-K. Kim, "DNA hypernetworks for information storage and retrieval," DNA computing, Vol. 4287, pp. 298-307, Springer, 2006. https://doi.org/10.1007/11925903_23