DOI QR코드

DOI QR Code

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon

입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구

  • Lee, Jong-Jib (Div. of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2014.10.30
  • Accepted : 2014.11.04
  • Published : 2014.12.10

Abstract

Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

입상활성탄을 사용하여 new fuchsin 염료를 흡착하는데 필요한 흡착등온선과 흡착동역학 및 열역학 파라미터들에 대하여 조사하였다. 흡착평형은 Langmuir 흡착등온식이 가장 잘 맞았으며, 등온흡착평형관계로부터 Langmuir 식과 Freundlich 식의 분리계수를 평가한 결과, 분리계수값이 각각 $R_L$ = 0.023, 1/n=0.198로 입상활성탄에 의한 new fuchsin 염료의 흡착조작이 유효한 처리방법이 될 수 있음을 알았다. Dubinin-Radushkevich 식으로 구한 흡착에너지값(E = 0.002 kJ/mol)과 Temkin 식으로부터 구한 흡착열상수값(B = 1.920 J/mol)으로부터 흡착공정이 물리흡착공정임을 알았다. 흡착공정에 대한 동력학적 해석을 통해 흡착반응은 유사이차반응속도식이 유사일차반응속도식과 비교하여 일치도가 높은 것으로 나타났으며, 입자 내 확산이 흡착공정의 지배단계이었다. 열역학적 해석을 통해 평가된 엔탈피 변화값(92.49 kJ/mol)과 활성화에너지값(11.79 kJ/mol)으로부터 흡착공정이 흡열반응으로 진행되었다. 또한, 엔트로피 변화값이 313.7 J/mol K로 흡착공정의 무질서도가 증가하였다. 온도가 올라갈수록 자유에너지값이 감소하는 것은 활성탄에 대한 new fuchsin 염료의 흡착반응은 온도가 올라갈수록 자발성이 높아지는 것으로 판단되었다.

Keywords

References

  1. T. Chakrabarti, P. V. R. Subrahmanyan, and B. B. Sundaresan, Biodegradation of recalcitrant industrial wastes, Biotreat. Sys., 2, 171-234 (1988).
  2. M. Hema and S. Arivoli, Comparative study on the adsorption kinetics and thermodynamics of dyes onto acid activated low cost carbon, Int. J. Phys. Sci., 2, 10-17 (2007).
  3. A. Reife and H. S. Freeman, Pollution prevention in the production of dyes and pigments, Text. Chem. Color. Am. Dyes. Rep., 32, 56-60 (2000).
  4. A. Demirbas, Agricultural based activated carbon for the removal of dyes from aqueous solutions: A review, J. Hazard. Mater., 167, 1-9 (2009). https://doi.org/10.1016/j.jhazmat.2008.12.114
  5. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Adsorption of basic dye on high-surfacearea activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  6. S. Ismadji, Y. Sudaryanto, S. B. Hartono, L. E. K. Setiawan, and A. Ayucitra, Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: porestructure development and characterization, Bioresour. Technol., 96, 1364-1369 (2005). https://doi.org/10.1016/j.biortech.2004.11.007
  7. G. Bayramoglu, B. Altintas, and M. Y. Arica, Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin, Chem. Eng. J., 152, 339-346 (2009). https://doi.org/10.1016/j.cej.2009.04.051
  8. J. M. Bastidas, P. Pinilla, E. Cano, J. L. Polo, and S. Miguel, Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media, Corros. Sci., 45, 427 (2003). https://doi.org/10.1016/S0010-938X(02)00123-3
  9. J. W. Churchman, The reverse selective bacteriostatic action of acid fuchsin, J. Exp. Med., 37, 1-10 (1923). https://doi.org/10.1007/BF02609141
  10. A. A. Fisher, Irritant and toxic reactions to phenol in topical medications, Cutis, 26, 363 (1980).
  11. N. A. Littlefield, B. N. Blackwell, C. C. Hewitt, and D. W. Gaylor, Chronic toxicity and carcinogenicity studies of gentian violet in mice, Toxicol. Sci., 5, 902-912 (1985). https://doi.org/10.1093/toxsci/5.5.902
  12. B. D. Bhole, B. Ganguly, A. Madhuram, D. Deshpande, and J. Joshi, Biosorption of methyl violet, basic fuchsin and their mixture using dead fungal biomass, Curr. Sci., 86, 1641 (2004).
  13. V. K. Gupta, A. Mittal, V. Gajbe, and J. Mittal, Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents, J. Colloid Interface Sci., 319, 30-39 (2008). https://doi.org/10.1016/j.jcis.2007.09.091
  14. R. J. Lan, J. J. Li, and B. H. Chen, Ultrasonic degradation of fuchsin basic in aqueous solution: effects of operating parameters and additives, Int. J. Photoenenrgy, 15, 1-7 (2013)
  15. L. Huang, J. Kong, W. Wang, C. Zhang, S. Nia, and B. Gao, Study on Fe(III) and Mn(II) modified activated carbons derived from Zizania latifolia to removal basic fuchsin, Desalination, 286, 268-276 (2012). https://doi.org/10.1016/j.desal.2011.11.034
  16. L. Zhang, X. Zhou, X. Guo, X. Song, and X. Liu, Investigation on the degradation of acid fuchsin induced oxidation by $MgFe_2O_4$ under microwave irradiation, J. Molecular Catalyst. A: Chemical 335, 31-37 (2011). https://doi.org/10.1016/j.molcata.2010.11.007
  17. A. S. Elsherbiny, Adsorption kinetics and mechanism of acid dye onto montmorillonite from aqueous solutions: stopped-flow measurements, Appl. Clay. Sci., 83-84, 56-62 (2013). https://doi.org/10.1016/j.clay.2013.07.014
  18. T. W. Weber and R. K. Chakrabarti, Pore and solid diffusion kinetics in fixed bed adsorption under constant pattern conditions, Ind. Chem. Eng. Fund., 5, 212-223 (1996).
  19. B. H. Fukukawa, Activated carbon water treatment technology and management, Y. K. Kim, 69-70, Shinkwang Munhwa Publishing Co. Seoul (1996).
  20. S. Nethaji, A. Sivasamy, G. Thennarasu, and S. Saravanan, Adsorption of malachite green dye onto activated carbon derived from borassus aethiopum flower biomass, J. Hazard. Mater., 181, 271-280 (2010). https://doi.org/10.1016/j.jhazmat.2010.05.008
  21. M. Jain, V. Garg, and K. Kadirvelu. Chromium (VI) removal from aqueous solution, using sunflower stem waste, J. Hazard. Mater., 162, 365-372 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.048
  22. J. J. Lee, Equilibrium, kinetics and thermodynamic parameters studies on metanil yellow dye adsorption by granular activated carbon, Appl. Chem. Eng., 25, 96-102 (2014). https://doi.org/10.14478/ace.2013.1122
  23. J. J. Lee, Adsorption Equilibrium, kinetics and thermodynamic parameters studies of bismarck brown R dye adsorption on granular activated carbon, Appl. Chem. Eng., 24, 327-332 (2013).
  24. O. Grecel, A. Ozcan, A. S. Ozcanand, and H. F. Grecel, Preparation of activated carbon from a renewable bio-plant of euphorbia rigidia by $H_2SO_4$ activation and its adsorption behavior in aqueous solutions, Appl. Surf. Sci., 253, 4843-4852 (2007). https://doi.org/10.1016/j.apsusc.2006.10.053
  25. Y. Onal, C. A. BaSar, D. Eren, C. S. Onalzdemir, and T. Depci, Adsorption kinetics of malachite green onto activated carbon prepared from tuncbilek lignite, J. Hazard. Mater., B128, 150-157 (2006).
  26. H. Nollet, M. Roels, P. Lutgen, P. Van der Meeren, and W. Verstraete, Removal of PCBs from wastewater using fly ash, Chemosphere, 53, 655 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  27. Y. Li, J. Sun, Q. Du, L. Zhang, X. Yang, S. Wu, Y. Xia, Z. Wang, L. Xia, and A. Cao, Mechanical and dye adsorption properties of graphene oxide/chitosan composite fibers prepared by wet spinning, J. Carbohydr Polym., 102, 755-761 (2014). https://doi.org/10.1016/j.carbpol.2013.10.094

Cited by

  1. Equilibrium, Kinetic and Thermodynamic Parameter Studies on Adsorption of Acid Black 1 Using Coconut Shell-Based Granular Activated Carbon vol.27, pp.6, 2016, https://doi.org/10.14478/ace.2016.1085
  2. 상용 TiO2의 지하수 비소제거 특성에 관한 연구 vol.31, pp.6, 2014, https://doi.org/10.15681/kswe.2015.31.6.632
  3. 활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구 vol.30, pp.2, 2014, https://doi.org/10.14478/ace.2019.1001
  4. 석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터 vol.31, pp.2, 2014, https://doi.org/10.14478/ace.2020.1007
  5. 소나무 수피 바이오차를 이용한 수중에서 망간의 제거능력 향상 vol.31, pp.5, 2014, https://doi.org/10.14478/ace.2020.1063